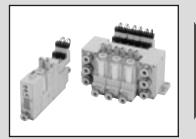

Vacuum pump system type VS*P

Vacuum component

CONTENTS	
Series variation	166
• 20 mm width universal type (VSJP/VSJPM)	168
10.5 mm width universal type (VSXP/VSXPM)	184
31.5 mm width discrete type (VSQP)	214
• 11 mm pitch manifold dedicated type (VSZPM)	226

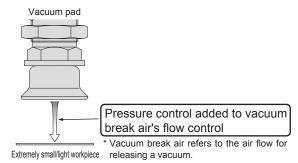

Vacuum changeover unit

																		: Provi	ided as st	andard	O: Option														
						Pipi	ng me	thod			Comp	onents	;		No	zzle d	liamete	erø(1/	′10mm)																
ε	Model	Series			Model no.	Discrete	Individual wiring	Reduced wiring	Vacuum control valve	Valve for break	Vacuum switch	Vacuum filter	Silencer	Check valve	05	07	10	12	15 2	20	Page	Ε													
r pump syste		VSJP/VSJPM Series 20 mm width universal type unit • Enable to control air flow and pressure for vacuum break. • The vacuum break time can be shortened with the vacuum break circuit relief function. • Sole hold time is standard for vacuum calendid uption. • Sole hold time is standard for vacuum calendid uption.	And a		VSJP					• •		•					n valve e				168	n pump syste													
Vacuum		Self hold type is standard for vacuum solenoid valve.			VSJPM		•				0					3.5m	m² (ø4),	5mm² (ø6)			Vacuun													
VSJP VSJPM	ו type unit	 VSXP/VSXPM Series 10.5 mm width universal type unit Compact and slim vacuum unit. Either direct fixing or DIN rail installation is possible. Uigh grades are precisible with 2 way wagyum values (antional) 	1		VSXP	•				•	0						n valve e specificat	tions: 3.	area 5mm² (ø4 5mm² (ø6		184	VSJP VSJPM													
VSXP VS. VSXPM VS.	systen	High cycles are possible with 3-way vacuum valves (optional).	and the second se	and the second se	and the second se	and the second se	and the second se	and the second se		and the second se				and the second se	and the second se		VSXPM			•								3 way	valve s	specificat	tions: 3.	0mm² (ø4 6mm² (ø6	1),		VSXP VS. VSXPM VS.
	Vacuum pump Vacuum chan		50													Vacuun	n valve e	effective	area			SQP VS)													
PM VSQP	Vacui		City of the		VSQP	•			•	•	0	•					16.5m	nm²			214	PM VSC													
WdZSA		 VSZPM Series 11 mm pitch manifold dedicated unit Wire-saving vacuum unit for manifold. Air consumption is reduced by suppressing valve energy consumption to 0.55 W. Compatible with a wide range of applications and broad vacuum sensor variations. 			VSZPM			•	•	•	0	•			,	Vacuun	m valve e 4.5m		area		226	NSZ													

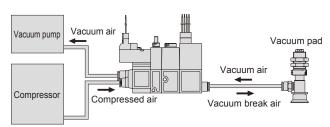
Vacuum pump system

Series variation

CKD


Universal type vacuum changeover unit with break air flow and relief pressure adjusting needle

VSJP Series



Features

- Pressure control is added to the conventional vacuum break air flow control to prevent the work piece from blown away.
- Relief function (function to release excessive pressure) is incorporated in the vacuum break circuit to shorten vacuum break time.

■ Use the vacuum-pump-compatible model when large amounts of vacuum air are required or when a vacuum must be generated for a long time.

- A manifold model also enables piping to be reduced. The piping direction is selectable from front or back to match the installation site.
- Three types of supply valves are available; self-holding, normally closed, normally open. The power-saving self-holding type is suitable for special applications such as the vacuum must be generated for a long time.
- LED display with enhanced visibility are used for the vacuum sensor display. 2 types vacuum sensor are available; with 2-point switch output, with analog output, to match your application. Connector wiring is used to facilitate wiring layout.

VSZPM VSQP VSXP VS

168 **CKD**

Vacuum pump system

Specifications

Description	S	VSJP
Working fluid		Air
Working pressure range	MPa	0.3 to 0.7
Ambient temperature range	°C	5 to 50
Use vacuum	kPa	0 to -101

Solenoid valve (for vacuum supply, vacuum break) specifications

Descriptions	Valve for vac	cuum supply	Valve for vacuum break				
Actuation	Direct operation						
Valve structure	Rubber sealant, poppet valve						
Rated voltage	24 VDC	100 VAC	24 VDC	100 VAC			
Allowable voltage fluctuation range	24 VDC ±10% 100 VAC ±10%		24 VDC ±10%	100 VAC ±10%			
Surge protective circuit	e circuit Surge absorber Bridge diod		Surge absorber	Bridge diode			
Power consumption	1.2W (with LED)	1.5VA (with LED)	1.2W (with LED)	1.5VA (with LED)			
Manual override		Push type nor	n-locking type				
Operating indication		During coil exciti	ng: Red LED ON				
		Connector type (cable length: 500 mm)					
Electric connection	Red: 24 VDC	Dhue	Red: 24 VDC	Dhue			
	Black: COM	Blue	Black: COM	Blue			

Switching valve

Operating indication	cation During coil exciting: Red LED ON							
		Connector type (cable	e length: 500 mm)		VSJP VSJP			
Electric connection	Red: 24 VDC	Blue	Red: 24 VDC	Blue	ŚŚ			
	Black: COM	Blue	Black: COM	Blue				
Switching valve					VSXP VSXPM			
Descriptions	Valve for vacuum	supply	Valve for vacu	ium supply				
Actuation		Air pressure operation using pilot valve						
Valve structure	Rubber sealant, poppet valve							
Withstanding pressure		1.05M	IPa		VSQF			
Valve type	Self hold, normally closed, r	normally open	Normally	closed	 			
Minimum excitation time	50msec (double solen	oid type)	_		Mdzs,			
Lubrication	Not required							
	Ain sumply (DC) northeins	ø4: 3.5mm ²	1mm	2				
Effective sectional area	Air supply (PS) port size	ø6: 5mm ²	1mm	1				

Vacuum switch with LED display specifications

Desc	criptions	With 2 point switch output (-W)	With analog output (-A)		
Default set value		- 50kPa (SW1), - 10kPa (SW2)	-50kPa		
Current consumption		40mA	or less		
Pressure d	etection method	Carrier diffusion type semi	conductor pressure switch		
Working p	oressure range	0 to -1	00kPa		
Set press	ure range	0 to -9	99kPa		
Withstand	ling pressure	0.21	ИРа		
Storage ter	mperature range	-20 to 80°C (atmospheric press	sure, humidity 60%RH or less)		
Operating te	emperature range	0 to 50°C (n	no freezing)		
Operation	humidity range	35 to 85%RH	(no freezing)		
Power vol	tage	12 to 24 VDC ± 10% rip	ople (P - P) 10% or less		
Protective	structure	IEC standards IF	240 or equivalent		
Pressure	setting point	2	1		
Operation	precision	±3% F. S. max	. (at Ta = 25°C)		
Hysteresis	S	Fixing (2% F. S. max.)	Variable (set point 0 to 15%)		
Switch output		NPN open collector output 30V 80mA or less residual voltage 0.8V or less			
	Output voltage	-	1 to 5V		
	Zero point voltage	-	1±0.1 V		
Analog output	Span voltage	-	4±0.1 V		
ομιραί	Output current	-	1mA or less (load resistance $5k\Omega$ and over)		
	LIN/HYS	-	±0.5% F. S. max.		
Responsiv	veness	2msec	c max.		
Indicator		0 to -99kPa (2 digi	it red LED display)		
Number o	f displays	Approx. 4	times/sec.		
Display pr	recision	±3% F. S	. ±2 digit		
Resolutior	n	1 d	igit		
Oracratica	indication	SW1: red LED lighting if setting pressure or more			
Operating	indication	SW2: green LED lighting if setting pressure or more	Red LED lighting if setting pressure or more		
		1. MODE switchover switch (ME, S1 or S2)	1. MODE switchover switch (ME or SW)		
Function	ĺ	2. S1 setting trimmer (2/3 rotation trimmer)	2. SW setting trimmer (2/3 rotation trimmer)		
Function		3. S2 setting trimmer (2/3 rotation trimmer)	3. HYS setting trimmer (set point 0 to 15%)		

Vacuum break specifications

Descriptions	Vacuum break function
Break air flow	0 to 50 l/min. (A.N.R.) (at supply pressure 0.5MPa)
Break air relief valve structure	Rubber sealant, poppet valve
Relief starting setting range	0.005 to 0.05MPa

Vacuum filter specifications

Descriptions		Vacuum filter		
Element material		PVF (poly-vinyl formal)		
Filtration		10µm		
Filter area		1130mm ²		
Deplessment filter element model ne	For vacuum	VSJ-VE		
Replacement filter element model no.	For break	VSJ-PE		

VSZPM VSQP VSJPM VSJPM

Weight / electric circuit / circuit diagram

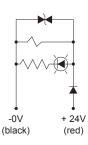
Weight

① Discrete unit							
	VSJP	Weight (g)	Remarks				
With sensor	VSJP-*-***-**-*	152.0	Vacuum port: ø4, ø6				
WILLI SELISUI	VSJP-*-8***-**-*	158.5	Vacuum port: ø8				
ARH	VSJP-*-***-**	125.5	Vacuum port: ø4, ø6				
Without sensor	VSJP-*-8***-**	132.0	Vacuum port: ø8				
2 Manifol	② Manifold intermediate block						
		Weight (g)	Remarks				
Manifold i	ntermediate block	18.5	For 1 station				

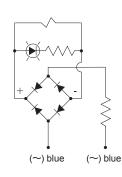
③ Manifold side block

VSJP	Weight (g)	Remarks
Vacuum changeover unit	106.0	Cartridge quantity: 6 pieces

④ Cartridge (input, exhaust port)

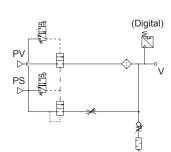

	Weight (g)	Remarks
Push-in joint for ø6	11.5	
Push-in joint for ø8	10.0	
Push-in joint for ø10	13.0	

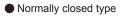
Obtain the VSJ weight using the following formula.

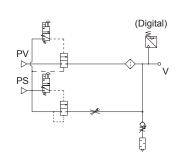

Manifold weight = (1) Discrete VSJ unit + (2) Manifold intermediate block) x No. of stations + (3) Manifold side block + (4) Cartridge x No. used

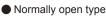
Electric circuit (solenoid valve)

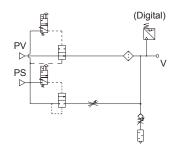
• 24 VDC specifications vacuum supply, vacuum break valve

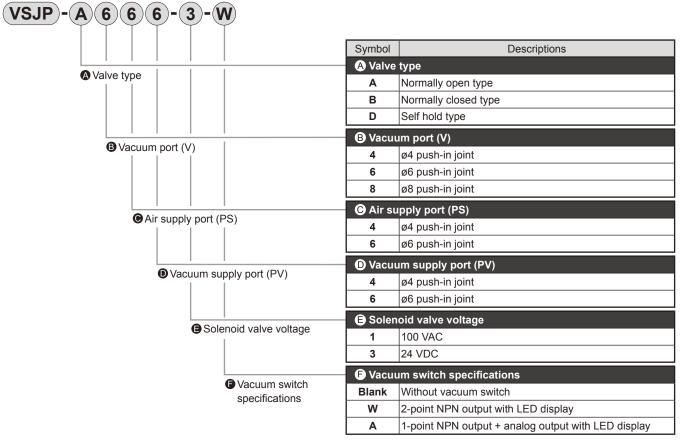



● 100 VAC specifications vacuum supply, vacuum break valve

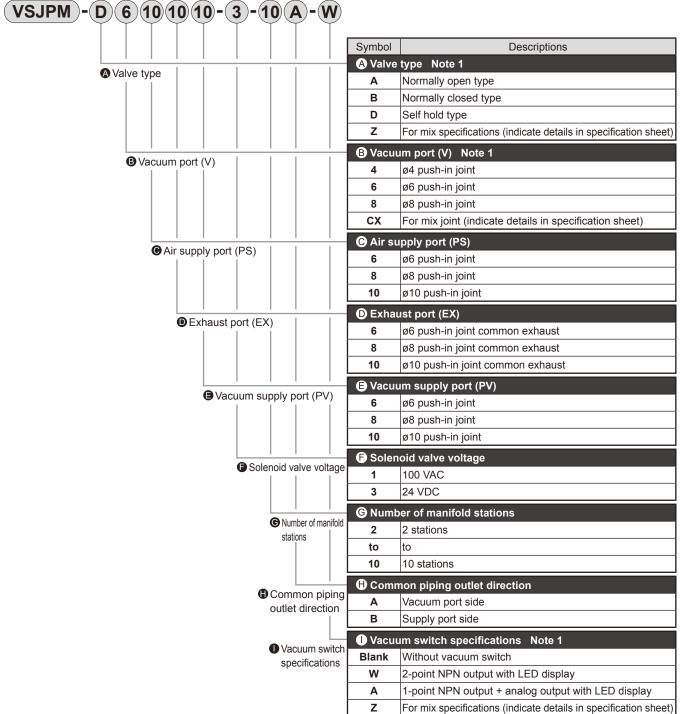



Circuit diagram


Self hold type



How to order (discrete type)


20mm width universal type discrete vacuum changeover unit type

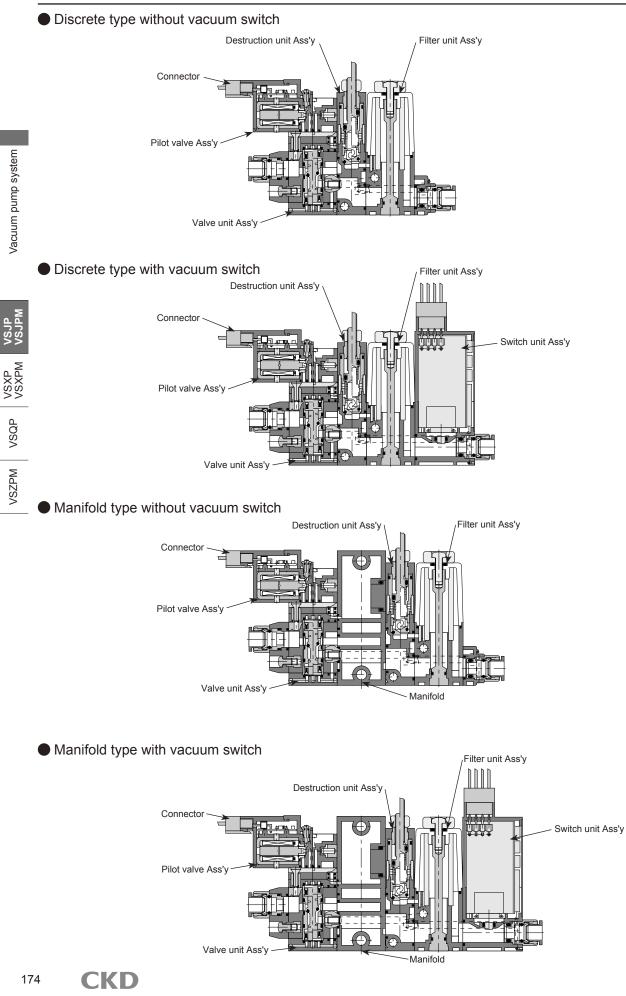
How to order (manifold type)

• 20mm width universal type vacuum changeover unit manifold type

A Note on model no. selection

Note 1: Indicate "Mixed manifold specifications" when selecting mixed specifications. Refer to page 182 for details.

Model no.


Filter element for vacuum side

VSG-E

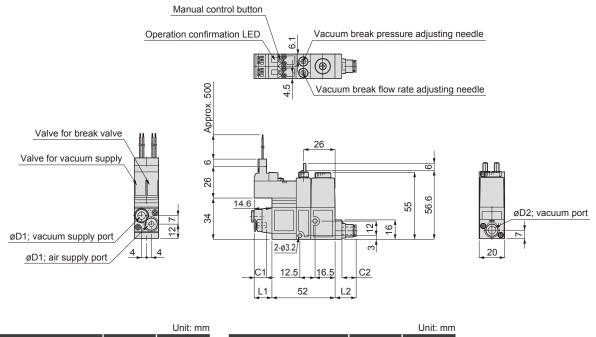
 \cdot Filter element for break side

VSJ-PE

Internal structure drawing

Vacuum pump system

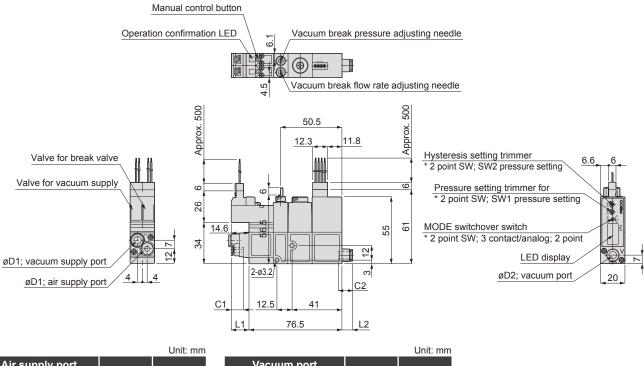
VSJP VSJPM


VSXP VSXPM

VSQP

VSZPM

Dimensions (discrete type)



		Onit. min	
Air supply port be outer diameter øD1	C1	L1	tub
4	11.5	14.9	
6	11.9	17.3	

	Unit: mm
C2	L2
11.2	14.6
11.9	17.4
18.2	25.8
	11.2 11.9

	With	vacuum	switch
$\mathbf{\nabla}$	VVILII	vacuum	SWILCH

tu

		Unit: m
Vacuum port tube outer diameter øD2	C2	L2
4	11.2	6.1
6	11.9	8.9
8	18.2	17.3

Air supply port tube outer diameter øD1	C1	L1
4	11.5	14.9
6	11.9	17.3

Dimensions (manifold type VSJPM)

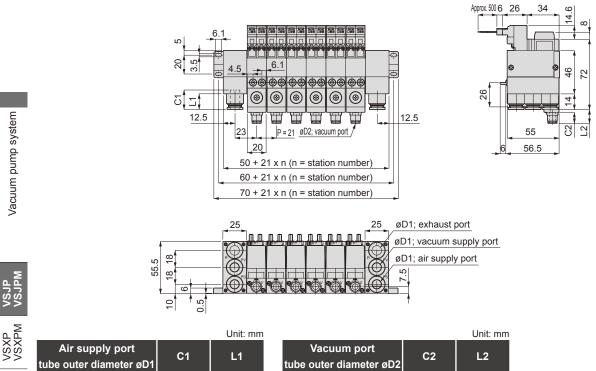
17

18.2

20.7

6

8

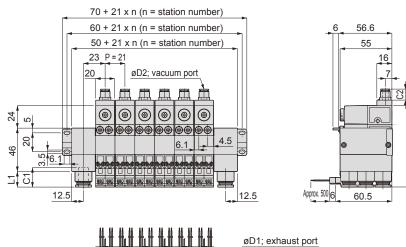

10

11.6

13.1

16.7

Common exhaust, common piping outlet direction, vacuum port side, without vacuum switch


VSXF	1XCVI
	L D C N
	MUJCA

Common exhaust, common piping outlet direction, supply port side, without vacuum switch

4

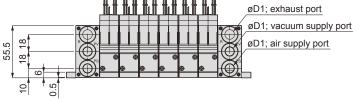
6

8

14.6

17.4

23.0

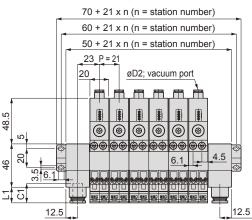

2

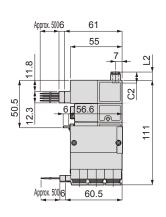
86.5

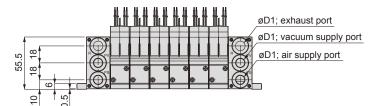
11 2

11.9

18.2


		Unit: mm			Unit: mm
Air supply port tube outer diameter øD1	C1	L1	Vacuum port tube outer diameter øD2	C2	L2
6	17	11.6	4	11.2	14.6
8	18.2	13.1	6	11.9	17.4
10	20.7	16.7	8	18.2	23.0


Dimensions (manifold type VSJPM)


Approx. 500 6 26 14.6 3.5 ຊ່ 6.1 56.5 4.5 46 96.5 ١ ¢¢ ĠĠ ¢¢ ¢¢ 12.3 5 5 0 1 6 ۲ ۲ ۲ 35.5 1 1 ß --ĝ. 12.5 12.5 Ш 11.8 3 P = 21 øD2; vacuum port / 55 23 2 Approx. 500 6 20 61 50 + 21 x n (n = station number) 60 + 21 x n (n = station number) 70 + 21 x n (n = station number) øD1; exhaust port 25 øD1; vacuum supply port 9 øD1; air supply port 55.5 8 7.5 5 0.5 Unit: mm Unit: mm Vacuum port Air supply port C1 L1 C2 L2 tube outer diameter øD1 tube outer diameter øD2 6 17 11.6 4 11.2 6.1 8 18.2 13.1 6 11.9 8.9 10 20.7 16.7 8 18.2 17.3

Common exhaust, common piping outlet direction, vacuum port side, with vacuum switch

Common exhaust, common piping outlet direction, supply port side, with vacuum switch

		Unit: mm			Unit: mm
Air supply port tube outer diameter øD1	C1	L1	Vacuum port tube outer diameter øD2	C2	L2
6	17	11.6	4	11.2	6.1
8	18.2	13.1	6	11.9	8.9
10	20.7	16.7	8	18.2	17.3

Safety precautions

Refer to Intro 13 for general precautions of vacuum system components.

WARNING

- Check that the leakage current is 1mA or less when operating valves. Malfunctions may result from the leakage current and cause problems.
- Vacuum leaks are tolerated with vacuum holding function. Provide separate safety measures if the vacuum must be held for a long time.
- When continuously energizing the pilot valve for a long time, heat generated from the coil could cause burns or adversely affect peripheral devices. Contact CKD when energizing the pilot valve for a long time.
- When using a self-hold type (VSJ-**A···), the switching valve location is neutral when the pilot air supply is stopped and then restarted, including when first used after delivery. When restarting the pilot air supply, issue a signal to the pilot valve or switch the valve manually.

CAUTIONS

- Do not apply excessive tension or bending to the pilot valve or vacuum switch leads. Wires or connectors may break.
- When using manifold specifications, the number of manifold or combination of installed devices may adversely affect performance or other station vacuum ports. Consult with CKD.
- Compressed air contains large amounts of drainage (water, oxidized oil, tar, foreign matter, etc.). The drainage may adversely affect performance. Dehumidify air with an after cooler and dryer and improve air quality.
- Do not use the lubricator.
- Rust etc. in the pipe may result in operation faults. Install a 5 µm or smaller filter preceding the supply port.
- Avoid using this vacuum changeover unit in environments with corrosive or flammable gas. Do not use this unit for fluids.
- Do not operate the vacuum break solenoid valve while generating vacuum.
- When replacing the vacuum port's cartridge joint, wipe away all dirt and substance and insert the lock pin securely.
- When replacing the supply port joint block, check that packing has not dropped off. Wipe away all dirt and substance and tighten the set screw securely to the specified.

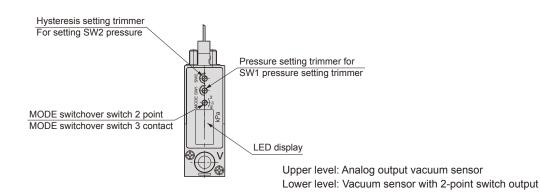
VSQP

VSZPM

1. Vacuum switch

(1) Pressure setting procedures

- ① Energizing (checking wiring and supplying DC power.)
- ② Set the display change switch to pressure setting mode (ME \rightarrow S1 or S2, SW).
- 2 -2. (Only for analog output vacuum sensors)
- Turn the hysteresis setting trimmer (HYS) fully in the CCW direction to set hysteresis to a minimum.
- ③ Turn the pressure setting trimmer (S1 or S2, SW) with a small screwdriver, setting it to the required setting.
- ④ Set the display change switch to ME, apply pressure, and check that the sensor operates appropriately. (For vacuum sensors with 2-point switch output) Switch output 1 (S1): The operation LED (red) turns on when set pressure is exceeded. Switch output 2 (S2): The operation LED (red) turns on when set pressure is exceeded. (For vacuum sensors with analog output)


Switch output (SW): The operation LED (red) turns on when set pressure is exceeded.

(2) Setting hysteresis

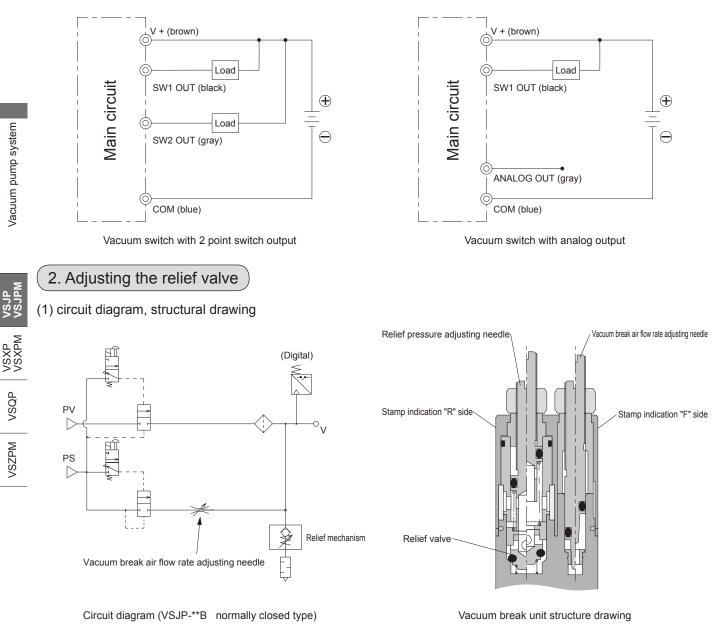
- 1 Hysteresis is adjusted using the hysteresis setting trimmer (HYS).
- 2 Hysteresis is adjusted from 0 to 15% of the setting. Hysteresis increases when the trimmer is turned to CW.
- (3) Checking hysteresis

Set the display change switch to pressure display mode (ME) and gradually increase and decrease pressure near the set pressure. Read values at which the operation indicator is turned on and off. The difference in displayed values is hysteresis.

- ④ Example of hysteresis adjustment
 - · If pressure has a pulse and output is thin and intermittent, use large hysteresis.

Cautions

- ① Do not use this vacuum switch in fluids or in an atmosphere with corrosive substances. The switch may fail.
- (2) Do not use wiring or applications that may cause noise (surge), etc., to be applied. The switch may fail.
- ③ Do not use this vacuum switch in an atmosphere containing fluids or flammable or explosive gases. This device is not explosionproof, so faults may occur.
- ④ Do not use this vacuum switch where it may be exposed to water, oil, or dust. This device is not drip-proof, so faults may occur.
- (5) Do not use this vacuum switch for applications that generate heat exceeding the working temperature range. The switch may fail.
- (6) Turn power off before wiring. Check the lead wire color during wiring, and check that the output terminal, power terminal, and COM terminal are not short-circuited. The switch may fail if these terminals are short-circuited.
- ⑦ Do not apply excessive tension or bend the connector cable excessively. Wires or connector section may break.
- (8) Check that pressure exceeding 0.2 MPa is not constantly applied during a vacuum break. Constant application of this pressure may damage the switch.
- ③ When setting pressure or hysteresis, use a small screwdriver, and gently turn the trimmer within its rotation range. Do not force it. The trimmer or PCB may be damaged if excessive force is applied during adjustment.
- 10 Use stabilized DC power.
- ① Insert a surge voltage absorption circuit in the relay or solenoid valve, etc., connected to the output terminal or power terminal. Avoid uses in which current exceeds 80 mA.
- 2 Ground the FG terminal when using unit power, such as switching power.
- (3) Do not short-circuit the output terminal (black or gray lead) with other terminals.
- ⁽¹⁾ Do not apply excessive external impact or force to the switch.


How to use

Vacuum pump system

VSQP

VSZPM

(4) Connection method

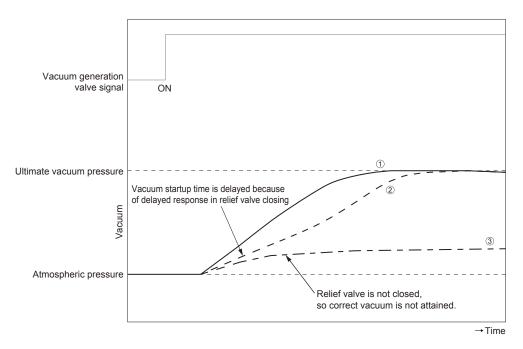
(2) Adjust the relief needle referring the relief needle opening limit on the Table 1 below, and set the relief pressure.

Table 1. Relief needle opening limit											
Vacuum characteristics	H: (High vacuum medium flow type)				L: (Medium v	acuum large f	ow rate type)	E: (High vacuum small flow rate type)			
Nozzle diameter (mm)	0.5	0.7	1.0	1.2	0.5	0.7	1.0	0.7	1.0	1.2	
Max. opening (rotation)	6.5	7.5	8.5	9.0	7.5	8.0	9.0	7.5	8.0	8.5	

* The needle opening limit for the vacuum pump-compatible unit (VSJP*) differs based on the performance of the vacuum pump. Set the needle opening so that the vacuum startup time and vacuum degree are not affected.

* Values in Table 1 apply to rated air pressure. The relief needle opening limit differs based on the supplied air pressure, vacuum properties, and vacuum piping (capacity), etc., so use values in Table 1 as references.

- (3) After setting the relief needle, confirm that the vacuum properties and vacuum startup time are correct.
 - * If the relief needle opening limit in Table 1 is exceeded, the vacuum startup time could be delayed, or the correct vacuum degree may not be attained. (Refer to "(5) Other " on page 181)
- (4) Set the required vacuum break flow rate with the vacuum break flow rate adjustment needle. * To shorten the vacuum break time, increase the vacuum air break flow rate.
 - * If the workpiece is blown, etc., reduce the vacuum air break flow rate.



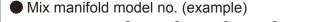
180

How to use

(5) Other

- 1) If the relief needle opening is within the range, vacuum startup with in the graph below is attained.
- 2) If the relief needle limit is exceeded, the vacuum startup state with 2 in the graph below is attained and the vacuum startup time is delayed.
- 3) If the relief needle is further opened, the state with (3) in the graph below is attained, and the correct vacuum degree is not attained.

Preparing the VSJPM mixed manifold specifications


Mix manifold model no. (example)

 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

Mix manifold specifications (example)

Vacuum changeover unit model no.	Layout										
	1	2	3	4	5	6	7	8	9	10	Quantity
VSJPM - B 4 - W	0	0	0								3
VSJPM - B 6 - A				0							1
VSJPM - B 8 - W					0						1
VSJPM											
VSJPM											

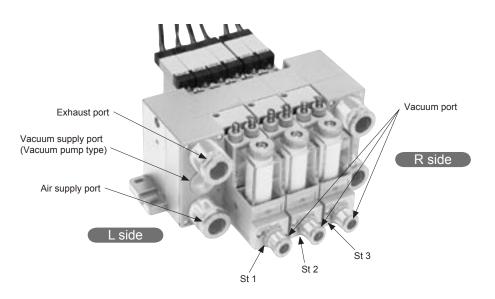

<Specifications when only output port size joints are mixed>

Image: Weight of the second second

Mix manifold specifications (example)

Vacuum changeover unit model no.		Layout									
B D	1	2	3	4	5	6	7	8	9	10	Quantity
VSJPM - B 4 - W	0		0		0						3
VSJPM - B 6 - W		0									1
VSJPM - B 8 - W				0							1
VSJPM											
VSJPM											

* The stations numbers are assigned as St. 1, St. 2 to St. 10 from the L side looking at the vacuum port from the front.

<Completing the form>

- Piping locations start from the vacuum port, and are set in order from the left.
- Indicate the total number of designated product models required at the far right in the table.

WSZPM VSQP VSXP WSJPM

VSJP	M mix manifold spec	ifications				
Contact	Quantity	Set	Request date		Issue / Your company na	/ ame
Slip No.		Order No.			Contact	Messrs
•					Purchase order N	10.
Mix m	anifold model no.					
VSJI	© © © PM -		.	• • • • • • • • • • • • • • • • • • •	-	
A Valve t	ype		F Solenoi	d valve voltage		
Α	Normally open type		1	100 VAC		
В	Normally closed type		3	24 VDC		
D	Self hold type		G Number	of manifold stat	ons	
Z	For mix specifications (indicate details in	specification sheet)	2 to 10	2 stations to 10	stations	
B Vacuu	m port (V)		() Commo	n piping outlet di	rection	
4	ø4 push-in joint		А	Vacuum port sid	е	
6	ø6 push-in joint		В	Supply port side		
8	ø8 push-in joint		Vacuum	switch specifica	tions	
СХ	For mix joint (indicate details in spec	cification sheet)	Blank	Without vacuum		
C Air sup	oply port (PS)		w	2-point NPN out	put with LED display	
6	ø6 push-in joint		А	1-point NPN out	put + analog output with L	ED display
8	ø8 push-in joint		Z	For mix specificati	ons (indicate details in speci	fication sheet)
10	ø10 push-in joint					
DExhau	st port (EX)					
6	ø6 push-in joint common exhaust					
8	ø8 push-in joint common exhaust					
10	ø10 push-in joint common exhaust					
Vacuut	m supply port (PV)					
6	ø6 push-in joint					
8	ø8 push-in joint					

Mix manifold specifications

ø10 push-in joint

10

Vacuum changeover unit model no.		Layout									
	1	2	3	4	5	6	7	8	9	10	Quantity
VSJPM -											
VSJPM											
VSJPM											
VSJPM -											
VSJPM											

VSJP VSJPM