

"Instantaneous positioning " quick response direct drive actuator

Quick response type direct drive actuator AX1000T, AX2000T or AX4000T series New product

DIRECT DRIVE ACTUATOR, QUICK RESPONSE TYPE, AX1000T, AX2000T, AX4000T SERIES

CKD Corporation cc-995A4

"Instant positioning! Quick response absodex" with even easier setup!

A Violation Series

High precision, multi-functions

High precision absolute DD actuator that can index 360° anywhere and combine intermittent and continuous rotation.

Environmental design

Low profile, oil free, reusable and energy efficient....the features you need to build an ecological equipment.

NEW

Quick setup!

Better compatibility for AX 1000T

Quick positioning!

Easier service and maintenance thanks to improved compatibility among drivers, actuators and cables.

Rohs

Easier to link with other components with the A/B phase encoder output. 2. Improved usability **Optimal tuning in no time** Easier setup Newly added semi-automatic tuning function Adjustment software included (AX tools) Increased I/O signals Control is on even when the motor is off Newly added ready output, servo on, etc. Separate motor and control power supply 3. Safety standards IEC standards, category 3 for "safe torque off function" 4. Conformity marks UL/cUL, CE compliant c FL[®]us CE **TÜV**Rheinland 5. Downsized GH/WGH type drivers 65% smaller volume, 50mm shorter depth Reduced tact time with quicker response. Bringing safety by linking to the inspection machine. Detect the open/close of the door and shut off power. * Risk assessment as an entire equipment is necessary to meet safety standards.

1. Shorter tact time for your equipment

Reduce time loss with improved response "Instant positioning"; positioning time reduced by 75%.

Reduce start up time by linking with peripheral component

What's new in the TS/TH driver?

Convenience

Adjustment and installation support tool (AX) tools) comes standard.

Get the right adjustments in less time.

- Teaching note
 - Create programs and set parameter
 - Origin offset
 - Trial run
 - Semi-automatic tuning (TS type only)
 New By adjusting one parameter after auto tuning, the equipment can achieve higher performance.

Speed wave New

Review the tuning by measuring the actual change in velocity and convergent time.

FFT New

Deter resonance of mechanisms by setting a notch filter and low-pass filter.

■I/O check New

I/O status of host component and can be checked.

Additional functions New

- Input/output function
 - Ready output
 - · Servo state output
 - Encoder output
 - Servo on input
- Position deviation counter clear input

Parameter

- Setting positioning complete signal output duration Can be set h 0 to 100ms range.
- Mode selection of in position input Position output ON all the time within the inposition range or ON only when it is stopped within the in-position range.

Additional program selection method

- Select programs with 6bit input (0 to 63)
- Operation start with selection input + start input Reduce tact time by reducing the time required to operate after program selection by abbreviating the program number setting input.
- Prevents free-run when alarm is on Slows down and stops the servo when an alarm caused by coasting goes off to prevent accidents

Features of the Absodex

Return to origin not required

Because the absodex has an absolute resolver that can detect the current position right after being turned on, you don't need to do an return to origin operation each and every time. You can also restart form the current position after and emergency stop also.

Smooth cam curve drive

5 types of cam curves are installed as standard. Minimizes the shock during rotation and stop.

 Model selection software (free) Select the model you need with ease.

Green technology

Energy saving

Power is consumed only during indexing. Almost no power is consumed while the output shaft is stopped.

■No need to replace or dispose lubricant

No more task of replacing and disposing lubricants. Eliminates pollution caused by oil leakage.

- Smaller components, smaller equipment Does not require origin detection sensor, reducer and etc.
- Easy to change specifications, reusable Can be reused unlike mechanical indexes by changing specifications using computers and the teaching pendant.

System configuration

- Basic settings
- 1. Input the program from a personal computer or from the teaching pendant.
- 2. Set required parameters the same way.
- 3. Set the appropriate gain.

- Basic drive methods
- 1. The program which is selected to do wants from PLC.
- 2. Provide start signal from a PLC.
- 3. Postioning complete signal will be output from the driver after a movement.

The parts below and over current/short circuit protection components are required to comply with the CE marking. Also, the driver must be placed withing the switch board. Refer to the manual or technical documents for Absodex AX Series TS/TH type to find out how to install them.

Product name	Application	Model no.	Manufacturer
Noise filter	Three phase/Single phase AC200V to 230V	3SUP-EF10-ER-6	Okaya Electric
	Single phase AC100V to 115V	NF2015A-OD	Soshin Electric
Ferrite core	Common	RC5060	Soshin Electric
Surge protector	Common	R/A/V-81BXZ-4	Okaya Electric
FG clamp*	Common	FGC-5, FGC-8	Kitagawa Industries
*FG clamp is used to ea	orth the sheild for motor c	able and resolver cable	

Configuration (set model no. selection)

	Name	Quantity		
conf	Actuator body	1		
anda	Driver (with controller)			
ation	Motor cable and resolver cable	1 each		
	Accessories; I/O connector, connector for power supply	<u>у,</u>		

connector for motor cable

Programming tool

- Teaching pendant "AX0180" available.
- Adjustment and installation support tool (AX tools) available. (Free, OS:Windows)
- Create and save programs, set parameters, enter commands using a PC.

Communication cable RS-232C(for9 pin D-sub(2m) model no.:AX-RS232C-9P) is required.

- Note) The communication cable is designed only to be used for Absodex. If other cables are used, the drive and pc may be damaged.
- Note) Disconnect the teaching pendant or PC from CN1 during normal operation. Connect them only during setting and adjustment.
- Note) Do not put the PC in "stand by" with the USB-Serial conversion cable is connected. This will result in an error after returning from stand by.

Intro5 CKD

Example of a STO timing chart

The Safe Torque Off function allows you to turn off the motor by the opening/closeing of a contact of an external safety component.

An example of a timing chart using the STO terminal (TB1) is shown below.

- Use the safe torque off function with the servo off in normal conditions.
- Always conduct a risk assesment off of the entire equipment when using the safe torque off function.

Direct drive actuator series variation

Intro7 CKD

Applications	Page: 41
▲Safety precautions	: Intro 9
Related parts model no. table	Page: 39
Selection guide	Page: 43

Torque (N•m)		Index	Repeatability	Fosturos	Applications	Paga		
210	300	500	1000	(sec.)	(sec.)	reatures	Applications	Fage
AX1210T				±15	±5	 High precision model with indexing accuracy and low displacement High speed rotation (AX1022TS: 240rpm, AX1045TS:240rpm, AX1075TS:140rpm, AX1150TS:120rpm, AX1210TS:120rpm) 	 Precision measurment Turntable Inspection machine Assembly machine 	1 to 6
				±30	±5	 High speed rotation (300rpm) Small diameter and low profile Large diameter of the hollow hole (Φ30) 	• P&P • Turntable • Assembly machine	7 to 10
	AX4300T	AX4500T	AX410WT	±30	±5	 High speed rotation (AX4009TS: 240rpm, AX4022TS:240rpm, AX4045TS:240rpm, AX4075TS:140rpm) Capable of handling load of large moment of inertia Hollow diameter is wide large size option. 	 Turntable Inspection machine Assembly machine P&P 	11 to 28
				One d that a The cc rotatic to be s Data i M cod	river ca re comp ontrolle on angle set as c s excha le outpu	in operate actuators o batible. r function enables the e, movement time and lesired with an NC pro inged with an externa it, etc.	of any size e actuator's d timer, etc., ogram. I PLC using	TS type;29 to 34 TH type; 29 to 34

AX1000T

AX2000T

Safety precautions

Always read this section before starting use.

When designing and manufacturing devices using direct drive actuator, the manufacturer has an obligation to manufacture a safe device, and to check that the safety of the device's mechanical mechanism and the system operated by the electrical control that controls the device is secured. It is important to select, use, handle, and maintain the product appropriately to ensure that the CKD product is used safely.

Observe warnings and precautions to ensure device safety.

Check that device safety is ensured, and manufacture a safe device.

This product is designed and manufactured as a general industrial machine part. It must be handled by an operator having sufficient knowledge and experience in handling.

2 Use this product in accordance of specifications.

This product must be used within its stated specifications. It must not be modified or machined.

This product is intended for use as a general-purpose industrial device or part. It is not intended for use outdoors or for use under the following conditions or environment.

(Note that this product can be used when CKD is consulted prior to use and the customer consents to CKD product specifications. The customer must provide safety measures to avoid risks in the event of problems.)

Ouse for special applications including nuclear energy, railway, aircraft, marine vessel, vehicle, medicinal devices, devices coming into contact with beverages or foodstuffs, amusement devices, emergency cutoff circuits (cutoff, open, etc.), press machines, press circuits or safety devices.

OUse for applications where life or assets could be adversely affected, and special safety measures are required.

3 Observe association standards and regulations, etc., to ensure safe device design.

4 Do not remove devices until safety is confirmed.

- Inspect and service the machine and devices after confirming safety of the entire system related to this product.
- ONote that there may be hot or charged sections even after operation is stopped.
- Before starting device inspection or maintenance, turn off device power and other power to related devices, release compressed air, and check leakage current.

Observe the Instruction Manual and Precautions for each product to prevent accidents.

ODo not rotate the actuator outputs shaft by 30 rpm or more while power is off.

- The driver could fail or electrical shock result from actuator power generation.
- If the servomotor is turned off (including emergency stop or alarm) or brakes are turned off while a rotational force, such as gravity is applied, the output shaft may rotate by rotational force.
 - Conduct these operations flat where rotational force is not applied, or confirm safety before starting.
- **O**Unexpected movement may occur during gain adjustment or test operation, so keep hands, etc., away from the output shaft. When conducting operations with the actuator is not visible, confirm before starting that it is safe even if the output shaft turns.
- The brakes of the type with brake do not necessarily hold the outputs shaft completely in all situations. When safety must be ensured, such as in maintenance with an application that rotates the output shaft in unbalanced mode, or when stopping the machine for a long time, it may not be sufficient to stop the shaft with brakes alone. Use the system flat or provide a mechanical lock.
- GIt may take several seconds to stop in an emergency, depending on rotation speed and load.

6 Observe the precautions to prevent electrical shock.

- •High voltage is supplied to the terminal block at the driver's front panel. Install the enclosed terminal cover before operation. Do not touch the terminal block while power is on.
- Even after the power is turned off, a high voltage is applied until the charge accumulated in the internal capacitor is discharged. Wait at least five minutes after turning the power off before touching these sections.
- When working with the side cover off, such as for maintenance and inspection or changing driver switches, turn the power off to prevent damages and injuries caused by electrical shock from high voltages.
- ODo not connect or disconnect connectors while power is on. Misoperation, faults, or electrical shock may occur.

KD

8 Install an over current protection component.

Wire according to "JIS B 9960-1: 2008 Safety of Machinery - Electrical Equipment of Machines - Part 1 : General Requirements", and install an overcurrent protection device (such as molded case circuit breakers and circuit protectors) to the main•control power (terminal gland no. L1, L2, L3, L1C, L2C) and power supply for I/O (connector no. CN3-DV24V)

(Translation of an excerpt from JIS B9960-1 7.2.1 general requirements)

Overcurrent protection shall be provided in cases where the circuit current in a machine (electrical equipment) can exceed the lesser of either the rating of a component or allowable ampacity of the conductor. Ratings or settings to be assigned are set in 7.2.10.

Observe precautions on the pages that follow to prevent accidents.

The precautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.

A DANGER; When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, or when there is a high degree of emergency to a warning.

WARNING; When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries.

A CAUTION When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Note that some items described as "CAUTION" may lead to serious results depending on the situation. In any case, important information that must be observed is explained.

WARRANTY

Scope of warranty

Conditions related to the warranty term and scope are as follows:

1. Term of warranty

This product comes with a 1 year warranty from delivery. (this warranty is effective if the product is not operated for more than 8 hours a day. The warranty will expire if the product reaches its durability shown below) Durability (direct drive actuator)

Absodex brake with air brake, piston packing, valves

2. Scope of warranty

If any faults found to be the responsibility of CKD occur during the above warranty term, the part shall be repaired immediately by CKD free of charge.

Note that the following faults are excluded from the warranty term:

- ① Product abuse/misuse contrary to conditions/environment recommended in its catalogs/specifications.
- ② Faults caused by careless or incorrect handling, or improper control.
- ③ Faults caused by factors other than delivered parts.
- ④ Faults caused by improper product use.
- (5) Faults due to modifications to the product structure, performance, or specifications by a party other than CKD after the product is delivered, or faults caused by repairs not designated by CKD.
- (6) Damage that could have been avoided if the user's machine or equipment had functions and structures, etc., considered normal within the industry.
- \odot Failure due to causes not foreseeable with the technology at the time of delivery.
- ⑧ Failure due to fires, earthquakes, water damage, lightning, other acts of nature, acts of God, pollution, salt damage, gas damage, abnormal voltage, or other external forces.

The warranty here refers to the warranty of the actually delivered product, and does not include any damage resulting from a fault in the delivered product.

3. Warranty for exported products

(1) Product returned to our factories or companies/factories designated by CKD will be repaired. CKD is not liable for the costs and engineering required that is required for the return.

This warranty specifies basic conditions. If warranty details in individual specification drawings or specifications differ from these warranty conditions, specification drawings or specifications shall take priority.

Design & Selection

- The actuators and drivers are not waterproof. Provide waterproofing for use in places where water or oil could come in contact with these devices.
- 2 Current leakage and faults could occur if swarf or dust get onto the actuator or driver. Check that these do not come in contact with devices.
- **3** Turning the main power on and off frequently may cause damage to the element in the driver.
- 4 The output axis may move from the holding position even

without an external force if the power or servo is turned off.

5 Optional magnetic brakes are used to enhance holding rigidity during output shaft stoppage.

Do not use these brakes to brake or stop a rotating output shaft.

- 6 The actuator and driver do not have a rust proof guarantee.
- Equipment in which direct drive actuators are installed should have sufficient rigidity to realize full direct drive actuator performance. If the load equipment or frame's mechanical unique vibration is relatively low (200 to 300Hz or less), resonance could occur in the direct drive actuator and load equipment or frame. Secure the rotary table and main unit installation bolts, and ensure sufficient rigidity without loosening, etc. [Fig. 1]

Installing the actuator [Fig.1]

Gain must be adjusted based on load table size, etc. [Fig.2] Even when the direct drive actuator is not directly installed, it should be installed on a highly rigid frame. [Fig.2]

[Fig.2] Mounting the actuator

B When extending the outuput shaft, refer to table 1 as a reference for deciding the extended shaft diameter and length. Also, install a dummy inertia using fig. 3 as a reference.

[Table1] Reference of diameter for extended output shaft

Max. torque		Shaft	extensio	n(mm)	
[N · m]	50	100	200	300	500
6	φ35	φ40	φ46	φ50	φ60
9,12	φ40	φ46	φ55	φ60	φ70
18,22	φ45	φ55	φ65	φ70	φ80
45	φ55	φ65	φ75	φ85	φ95
75	φ62	φ75	φ90	φ95	φ110
150	φ75	φ90	φ110	φ115	φ130
210	φ80	φ95	φ115	φ125	φ140
300	φ90	φ105	φ125	φ140	φ155
500	φ100	φ120	φ145	φ160	φ180
1000	φ120	φ140	φ170	φ185	φ210

Design & Selection

- If sufficient rigidity cannot be attained, machine resonance is suppressed to some degree by installing dummy inertia as close to the actuator as possible.
 - Examples of adding dummy inertia are shown below.
 - When extending the output shaft, the following dimensions apply as a guide to the extended shaft's diameter:

AX2006T, AX4009T, AX2012T, AX2018T, AX \Box 022T, AX \Box 045T: $\Phi60mm$ and over, AX \Box 075T, AX \Box 150T, AX1210T, AX4300T: $\Phi90mm$ and over, AX4500T: $\Phi150mm$ and over.

As a reference, dummy inertia is [load inertia] x (0.2 to 1). [Fig.3]

[Fig.3] Example 1. for dummy inertia installation

- When coupling with belts, gears or spline or when joining with a key, dummy inertia should be [load inertia] x (0.5 to 2).
- If speed changes with belts or gears, use load inertia as the actuator output shaft conversion value, and install dummy inertia on the actuator. [fig.4] [fig.5].
 - Note: Install dummy inertia as large as possible within the actuator's capacity. (Use steel with a large specific gravity).

[Fig.4] Example 2. for dummy inertia installation

[Fig.5] Example 3. for dummy inertia installation

- Do not place the actuator where it may contact strong magnetic field.
 - Do not pass cables with high voltage through the central hollow hole.
 - It may lead to malfunctioning, lower performance and damage.
- Use of surge protector is recommended when there is a risk of damage caused by lightning surge.

Design & Selection

- 1) Do not use magnetic brakes to stop or control the rotating output shaft.
- 2) The driver will be damaged if the driver's BK+ and BK- and magnetic brakes are directly connected.
- 3) When connecting the following inductive load, such as a relay, to the external contact, set the coil's rated voltage to 24 VDC and the rated current to 100 mA or less, and provide measures against surge current.

Operation method

- 1. Control with NC program (M68, M69)
- When the "M68" code is executed, BK+ to BK- will not be energized (brakes are applied), and when the "M69" code is executed, BK+ to BK- will be energized (brakes are released). 2. Control with brake release input (I/O connector/18 pin)
- If brake release is input while the brakes are applied, BK+ to BK- will be energized (brakes are released).
- If magnetic brakes are frequently turned on and off, use a solid-state relay (SSR) for the external contact. Recommended model G3NA-D210BDC5-24 (OMRON) Refer to the SSR instruction manual before using.

• Relay contact serial connection

Check that relay contact capacity is 10 times or more than the rated current. If less, use a multiple relay and use two or more relay contacts serially. Reed life can be extended.

When passing a shaft through the hollow hole in the type with magnetic brakes, use a non-magnetic material (SUS303, etc.).

If magnetic material (S45C, etc.) is used, the shaft will be magnetized. This could cause iron powder to stick on the device or the peripheral devices to be affected by the magnetic properties.

Note that around the magnetic brakes, iron powder, etc., could be attracted by the magnetic properties, or measuring instruments, sensors and other devices could be affected.

15 Refer to the Technical Documents of the Absodex AX Series TS,TH type driver for other precautions.

Safety precautions Labor saving mechanisms warning

Always read this section before starting use.

Installation & Adjustment

- Connect the enclosed cable between the actuator and driver. Check that excessive force is not applied and the cable is not damaged. Do not modify the enclosed cable (change the length or material) because this could cause malfunction or faults.
- Connect the correct power supply. Connecting a undesignated power supply could cause faults. Wait at least 5 seconds after turning power off before turning it on again.
- Securely fix the direct drive actuator to the machine, and securely install loads such as the table before adjusting gain. Confirm that no interference occurs and that safety is secured even when flexible sections are rotated.
- **4** Do not tap the output shaft with a hammer, nor assemble it forcibly. Failure to observe this would prevent the expected accuracy or functions, and could cause faults.
- **5** Do not place strong magnetic fields such as rare earth magnets near the actuator. Failure to observe this may cause failures to maintain expected accuracy.
- **6** The actuator may become hot depending on operating conditions. Provide a cover, etc., so that it will not be touched by accident.
- The actuator may become hot depending on operating conditions.
- **8** Do not drill holes into the actuator. Contact CKD when machining is required.
- **9** Do not get on the actuator or flexible parts such the rotary table on the actuator during maintenance, etc.

10 Compatible type

- If the actuator and driver are combined mistakenly after program input (parameter setting), alarm 3 will go off. Check the actuator and driver combination.
 - Note: Alarm 3 is to prevent malfunction if the actuator and driver combination differ from when the program was input. Alarm 3 is reset when the program and parameters are input again.
- If operation is started with an incorrect actuator and driver combination after the program is input (after parameter setting), it may result in malfunctions and damages.
- When changing the cable length or type, order the cable separately.
- Actuator may catch fire if an incompatible driver is connected.
- When using a circuit breaker, select one that has higher harmonic measures for inverter use.
- The position of the output shaft in the actuator dimension drawing does not indicate the actuator's origin. When using it at the output shaft shown in dimension drawings, the origin must be adjusted to the origin offset.
- The body outlet cable on AX4009T and AX200T series can not be moved. Always fix it at the connector section so that it will not move. Also, refrain from applying excess force onto the cable or pulling on the cable since it may damage it.
- Refer to the technical documents of the Abxodex AX Series TS, TH type for other precautions and conformity to standards.

During Use & Maintenance

- Do not disassemble the actuator, because this may compromise expected functions and accuracy. Any modification to the resolver could cause critical damage.
- 2 When testing withstand voltage of the machine or equipment containing the direct drive actuator, disconnect the power cable for the driver and check that the voltage is not applied to the driver. Failure to observe this could result in faults.
- If alarm "4" (actuator overload: electronic thermal) goes off, wait for the actuator temperature to drop before restarting.

Alarm "4" could occur in the cases below. Remove the cause before resuming use.

- Resonance or vibration: Ensure sufficient installation rigidity.
- Tact or speed: Increase movement time or stopping time.
- Structure that locks the output shaft: Add M68, M69 commands.
- 4 Actuator coordinates are recognized after power is turned on so check that the output shaft does not move for several seconds after power is turned on.
- 5 Refer to the technical documents of the Abxodex AX Series TS, TH type for other precautions and conformity to standards.

Direct drive actuator

AX1000T Series actuator

High precision specification with high indexing accuracy and output shaft run out ●Max. torque: 22, 45/75/150/210N•m

Actuator specifications

Descriptions		AX1022T	AX1045T	AX1075T	AX1150T	AX1210T	
Maximum output torque	N•m	22	45	75	150	210	
Continuous output torque	N•m	7	15	25	50	70	
Max. rotation speed	rpm	240 (N	lote 1)	140 (Note 1)	120 (N	lote 1)	
Allowable axial load	Ν	60	00		2200		
Allowable moment load	N•m	19	38	70	140	170	
Allowable radial load	N	10	00		4000		
Output shaft moment of inertia	kg/m²	0.00505	0.00790	0.03660	0.05820	0.09280	
Allowable load moment of inertia	kg/m²	0.6	0.9	4.0	6.0	10.0	
Index accuracy (Note 3)	sec.		±15				
Repeatability (Note 3)	sec.		±5				
Output shaft friction torque	N•m	2	.0		8.0		
Resolver resolution	P/rev		540672				
Motor isolations class			Class F				
Motor withstanding voltage			1500 VAC for one minute				
Motor isolation resistance			10MΩ 500 VDC and over				
Working ambient temperature range				0 to 45°C			
Ambient humidity range			20 to 85%l	RH with no dew cor	ndensation		
Storage ambient temperature range				-20 to 80°C			
Storage ambient humidity range			20 to 90%l	RH with no dew cor	ndensation		
Atmosphere		No corrosive gas, flammable or powder dust					
Weight	kg	8.9	12.0	23.0	32.0	44.0	
Run out of output shaft	mm			0.01			
Run out of output shaft surface	mm			0.01			
Protection		IP20					

Note1: The speed must be kept below 80rpm during continuous rotation.

Contact CKD for CE certification requirements.

Note2: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.

Note3: The max ambient temperature is 40°C if used as an UL certified product.

AX1000T Series How to order

How to order

*Custom orders are not CE, UL/cUL, RoHS certified. Consult with CKD for details.

Speed/max. torque characteristics

AX1022TS

*This graph shows the characteristics under 3 phase AC200V

●AX1210TH

*This graph shows the characteristics under 3 phase AC200V

(Note) moment load

●AX1045TS

*This graph shows the characteristics under 3 phase AC200V

•AX1150TH

*This graph shows the characteristics under 3 phase AC200V

AX1000T Series

Dimensions

AX1045T

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function. Actuator

AX1000T Series

Dimensions

4

Φ37

Φ200h7

Φ290

ω

146.5

4

22

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Standard dimensions and dimensions with options

Dimensions

Dimensions with options

AX1075T/AX1150T/AX1210T

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

6

Direct drive actuator

AX2000T Series

High speed rotation(max. 300rpm). low profile, large hollow diameter (Φ30) ●Max. torque: 6/12, 18 N•m

•Compatible drier: TS type driver

Actuator specifications

Descriptions		AX2006T	AX2012T	AX2018T		
Maximum output torque	N•m	6.0	12.0	18.0		
Continuous output torque	N•m	2.0	4.0	6.0		
Max. rotation speed	rpm		300 (Note 1)			
Allowable axial load	Ν		1000			
Allowable moment load	N•m		40			
Output shaft moment of inertia	kg/m²	0.00575	0.00695	0.00910		
Allowable load moment of inertia	kg/m²	0.3	0.4	0.5		
Index precision (Note 2)	sec.	±30				
Repeatability (Note 2)	sec.	±5				
Output shaft friction torque	N•m	0.6 0.7				
Resolver resolution	P/rev	540672				
Motor isolation class		Class F				
Motor withstanding voltage		1500 VAC for one minute				
Motor isolation resistance		10MΩ 500 VDC and over				
Ambient temperature range		0 to 45°C				
Ambient humidity range		20 te	o 85%RH with no dew condensa	tion		
Storage ambient temperature range			-20 to 80°C			
Storage ambient humidity range		20 te	o 90%RH with no dew condensa	tion		
Atmosphere		No corrosive gas, flammable or powder dust				
Weight	kg	4.7	5.8	7.5		
Run out of output shaft	mm	0.03				
Surface run out of output shaft	mm		0.03			
Protection		IP20				

Note1: The speed must be kept below 80rpm during continuous rotation.

Note2: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.

Note3: The max ambient temperature is 40°C if used as a UL certified product.

Speed/max. torque characteristics

F

: Load

*This graph shows the characteristics under 3 phase AC200V L : Distance from output shaft center L : Distance from output shaft flan Always read the precautions on Intro 9 to 13 before starting use.

F : Load

X2000T Series How to order

How to order

*Custom orders are not CE, UL/cUL, RoHS certified. Consult with CKD for details.

length 4 m

AX2000T Series

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Dimensions

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Direct drive actuator

AX4000T Series

Resistance to load of large moment of inertia Wide variety of options Easier to pipe and wire with large inner diameter •Max. torque: 9/22, 45/75 N•m •Compatible drier: TS type driver

Actuator specifications

Descriptions		AX4009T	AX4022T	AX4045T	AX4075T		
Maximum output torque	N•m	9	22	45	75		
Continuous output torque	N•m	3	7	15	25		
Max. rotation speed	rpm		240 (Note 1)		140 (Note 1)		
Allowable axial load	Ν	800	37	00	20000		
Allowable moment load	N•m	40	60	80	200		
Output shaft moment of inertia	kg/m²	0.009	0.0206	0.0268	0.1490		
Allowable load moment of inertia	kg/m²	0.35 (1.75) (Note 2)	0.60 (3.00) (Note 2)	0.90 (5.00) (Note 2)	5.00 (25.00) (Note 2)		
Index accuracy (Note 4)	sec.		±30				
Repeatability (Note 4)	sec.	±5					
Output shaft friction torque	N•m	0.8	0.8 3.5 10.0				
Resolver resolution	P/rev	540672					
Motor isolation class		Class F					
Motor withstanding voltage		1500 VAC for one minute					
Motor isolation resistance		10MΩ 500 VDC and over					
Ambient temperature range		0 to 45°C					
Ambient humidity range			20 to 85%RH with ne	o dew condensation			
Storage ambient temperature range			-20 to	80°C			
Storage ambient humidity range			20 to 90%RH with ne	o dew condensation			
Atmosphere		No corrosive gas, flammable or powder dust					
Weight	kg	5.5	12.3	15.0	36.0		
Brake total weight when set	kg	—	16.4	19.3	54.0		
Run out of output shaft	mm		0.	03			
Run out of output shaft surface	mm		0.	05			
Protection		IP20					

Note1: The speed must be kept below 80rpm during continuous rotation.

Note2: When using within the load conditions shown in the parenthesis, set parameter 72(multiplier for integral gain) to 0.3(reference value). Note3: Consult CKD each time when using parameter 72 (multiplier for integral gain) during continuous rotation.

Note4: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.

Note5: Max. ambient temperature is 40°C when used as a UL certified product.

Specifications (option)

Compatible Descriptions	models	AX4022T/AX4045T	AX4075T
Туре		Non-backlash dry non-e	xcitation operation type
Rated voltage	v	DC	24V
Power supply wattage	W	30	55
Rated current	Α	1.25	2.30
Static friction torque	N∙m	35	200
Armature release time (brake on)	msec	50 (reference value)	50 (reference value)
Armature suction time (brake off)	msec	150 (reference value)	250 (reference value)
Holding precision	Minute	45 (refere	nce value)
Max. cycle rate	Time/min.	60	40

Note 1: When the output shaft is rotating, rubbing noise may be generated at the electromagnetic brake's disk and fixing section. Note 2: When moving after brakes are turned OFF, the delay time parameter must be changed based on armature suction time.

Note 3: This is a nonbacklash type, but it may be hard to hold a set position if load is applied in the direction of rotation.

Note 4: When electromagnetic brakes function, the armature may contact the magnetic brake's fixed section and generate noise. Note 5: Brakes are manually released by alternately screwing screws into manual release taps (3 positions). Lightly tighten screws until they stop, then turn them another 90°. When finished with manual release, remove the three bolts

immediately and apply brakes.

AX4000T Series How to order

How to order

*Custom orders are not CE, UL/cUL, RoHS certified. Consult with CKD for details.

AX4000T Series

Speed/max. torque characteristics

AX4009TS

AX4045TS

AX4022TS

[rpm]

300

200

100

0

0

Continuous

movement

5

10

range

Intermittent

movement range

15

*This graph shows the characteristics under 3 phase AC200V

20

25

(N•m)

Refer to the precautions on Intro 9 to 13 before starting use.

AX4000T Series

Dimensions

Not available if the optional base is installed.

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

AX4000T Actuator

16

CKD

AX4000T Series

Dimensions

AX40

AX4000T Series

Dimensions

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

AX4000T Actuator

CKD

AX4000T Series Dimensions

Direct drive actuator

AX4000T Series

Capable of handling large moment inertia Wide variety of options Easier to pipe and wire with large inner diameter •Max. torque: 150/300/500N•m •Compatible drier: TH type driver

Actuator specifications

Descriptions		AX4150T	AX4300T	AX4500T			
Maximum output torque	N•m	150	300	500			
Continuous output torque	N•m	50	100	160			
Max. rotation speed	rpm	100 (N	lote 1)	70			
Allowable axial load	Z		20000				
Allowable moment load	N•m	300	400	500			
Output shaft moment of inertia	kg/m²	0.2120	0.3260	0.7210			
Allowable load moment of inertia	kg/m²	75.00 (Note 2)	180.00 (Note 2)	300.00 (Note 2)			
Index accuracy (Note 3)	sec.		±30				
Repeatability (Note 3)	sec.	±5					
Output shaft friction torque	N•m	10.0 15.0					
Resolver resolution	P/rev	540672					
Motor isolation class		Class F					
Motor withstanding voltage		1500 VAC for one minute					
Motor isolation resistance		10MΩ 500 VDC and over					
Ambient temperature range			0 to 45°C				
Ambient humidity range		20 t	o 85%RH with no dew condensa	tion			
Storage ambient temperature range			-20 to 80°C				
Storage ambient humidity range		20 to 90%RH with no dew condensation					
Atmosphere		No corrosive gas, flammable or powder dust					
Weight	kg	44.0	66.0	115.0			
Total weight with brake	kg	63.0	86.0	-			
Run out of output shaft	mm	0.03					
Run out of output shaft surface	mm		0.05				
Protection			IP20				

Note1: The speed must be kept below 80rpm during continuous rotation.

Note2: The default setting will be large inertia moment compatible

Note3: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.

Note4: The max. ambient temperature is 40 °C if used as an UL certified product.

Electromagnetic brake specifications (option)

Compatible models Descriptions	AX4150T/AX4300T
Туре	Non-backlash dry non-excitation operation type
Rated voltage V	DC24V
Power supply wattage W	55
Rated current A	2.30
Static friction torque N•m	200
Armature release time (brake on) msec	50 (reference value)
Armature suction time (brake off) msec	250 (reference value)
Holding precision Minute	45 (reference value)
Max. cycle rate Time/min.	40

Note 1: When the output shaft is rotating, rubbing noise may be generated at the electromagnetic brake's disk and fixing section. Note 2: When moving after brakes are turned OFF, the delay time parameter must be changed based on armature suction time. Note 3: This is a nonbacklash type, but it may be hard to hold a set position if load is applied in the direction of rotation. Note 4: When electromagnetic brakes function, the armature may contact the magnetic brake's fixed section and generate noise.

Note 5: Brakes are manually released by alternately screwing screws into manual release taps (3 positions). Lightly tighten screws until they stop, then turn them another 90°. When finished with manual release, remove the three bolts immediately and apply brakes.

Read the precautions on Intro 9 to 13 during use.

X4000T Series How to order

How to order

*Custom orders are not CE, UL/cUL, RoHS certified. Consult with CKD for details.

Actuato

length 4 m

Speed/max. torque characteristics

●AX4150TH

●AX4500TH

(Note) moment load

F

- F: Load
- L: Distance from output shaft flange

•AX4300TH

*This graph shows the characteristics under 3 phase AC200V

Not available when using optional mounting base

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function. AX4000T Actuator

AX4000T Series

Dimensions

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Dimensions

• AX4500T

Note 1) The origin of the actuator may differ from the dimensions shown a boy watable if the optional base is installed. Origin can be configured randomly using the origin offset function.

Large direct drive actuator

AX400WT Series

Max. torque 1000N•m

large hollow shaft handy for cable wiring and piping, and a variety of options ●Max. torque: 1000N•m

•Compatible drier: TH type driver

Actuator specifications

Descriptions		AX410WT
Maximum output torque	N∙m	1000
Continuous output torque	N∙m	330
Max. rotation speed	rpm	30
Allowable axial load	Ν	20000
Allowable moment load	N∙m	400
Output shaft moment of inertia	kg/m²	2.72
Allowable load moment of inertia	kg/m²	600.00
Index accuracy (Note 1)	sec.	±30
Repeatability (Note 1)	sec.	±5
Output shaft friction torque	N∙m	20.0
Resolver resolution	P/rev	540672
Motor isolation class		Class F
Motor withstanding voltage		1500 VAC for one minute
Motor isolation resistance		10MΩ 500 VDC and over
Ambient temperature range		0 to 45°C
Ambient humidity range		20 to 85%RH with no dew condensation
Storage ambient temperature range		-20 to 80°C
Storage ambient humidity range		20 to 90%RH with no dew condensation
Atmosphere		No corrosive gas, flammable or powder dust
Weight	kg	198
Run out of output shaft	mm	0.03
Run out of output shaft surface	mm	0.08
Protection		IP20

Note1: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability. Note2: The max. ambient temperature is 40°C if used as an UL certified product.

Speed/max. torque characteristics

(Note) moment load

M(N•m)=F(N)×L(m) M: Moment load F: Load L: Distance from output shaft center M(N•m)=F(N)×(L+0.02)(m) M: Moment load F: Load L: Distance from output shaft flange

Safety precautions

It may take a few seconds to stop depending on the speed and load conditions, even with emergency stop.

How to order

Discrete driver model no.
 Three phase 200 to 230 VAC
 AX9000TH - U0

GInterface specifications

U4

DeviceNet

Discrete cable model no.
 Motor cable

AX-CBLM6-(DM04)

Resolver cable

AX-CBLR6-(DM04)

●Cable change (Note: "04" for cable length 4 m

AX400WT Series

Dimensions

AX410WT

27

Direct drive actuator **TS·TH type driver**

Interface specifications: Parallel I/O (NPN specifications)

Parallel I/O (PNP specifications)(Coming soon)

CC-Link PROFIBUS-DP DeviceNet

Features

- Separated main and control power supply
- Wiring methods changed from terminal block to connector
- Compact and light weight (resin body)
- 7 segment 2-digit LED display
- Encoder output added (only for parallel I/O)
- Optional serial communication (circuit board integrated)
- Add a monitor for positioning information and alarm condition. (Only U2,U3,U4 option)

Common specifications

		Model			
Descri	iptions	TS type driver AX9000TS	TH type driver AX9000TH		
	Main	Three phase 200V±10% to AC230 VAC ±10% (Note 1)			
	power	Single phase 200V±10% to AC230 VAC ±10% (Option J1) (Note2, 3)			
Power	supply				
voltage	Control	Single phase 200V±10% to	AC230 VAC ±10%		
	power	Single phase 200V±10% to AC230 VAC ±10% (Option			
	supply	J1) (Note2, 3)			
Power supp	ly frequency	50/6	0 Hz		
Rated input current		AC200V: 1.8A AC100V: 2.4A	AC200V: 5.0A		
Rated output current		1.9A	5.0A		
Structur	e	Driver and controller integrated type (open frame)			
Ambient tem	perature range	0 to 50°C			
Ambient hu	midity range	20 to 90%RH (with no dew condensation)			
Storage ambient	temperature range	-20 to 80°C			
Storage ambien	t humidity range	20 to 90%RH (with no dew condensation)			
Atmosph	nere	With no corrosive gas and powder dust			
Noiso-ro	eietanco	1000V(P-P), pulse amplitude 1µsec, start up 1nsec			
10136-16	Sistance	EMI test inductive noise (capacity coupling)			
Vibration resistance		4.9m/s ²			
Weight		1.6k g	2.1k g		
Protection		IP2X(excluding CN4,CN5)			

Note 1: Single phase 200 to 230 VAC is available for models with a torque of 45N·m or less. Note 2: Connecting 200 to 230 VAC to 100 to 115VAC specifications

(option -J1) will destroy the driver. Note 3: (-J1) cannot be selected for models with a max. torque of 75N•m or more. Note 4: If the power has been cut off while the actuator is rotating, the

rotation may continue due to inertia.

Note 5: In some cases, the motor will move due to the remaining electricity in the drive, even after the power has been cut off.

Power supply wattage and breaker capacity

TS type driver

		Power supply wattage (KVA)		Rush current (A)		Breaker capacity	
Actuator model no.	Driver model no.	river model no. Max. Rated Single phase 100		Single phase 100V	Single phase and three phase 200V	Rated current (A)	
AX2006T	AX9000TS	0.8	0.5			10	
AX4009T,AX2012T,AX2018T, AX4009T,AX4022T		1.0	0.5	16(Note1)	56(Note1)		
AX1045T,AX4045T		1.5	0.5				
AX1075T,AX4075T		2.0	0.8	—			

Note 1)Rush current value is typical value in AC115V and AC230V.

TH type driver

10. watt	ige (KVA)	Rated input current (A)	output (A)	Rush current (A)	capacity
Max.	Rated	Three phase 200V	Max.	Three phase 200V	Rated current (A)
3.0	0.8	4.2	16.7		
4.0	1.5	6.1	25.0	50	20
4.0	2.0	6.1	25.0	50	20
4.0	2.0	6.1	25.0		
	Max. 3.0 4.0 4.0 4.0	Max. Rated 3.0 0.8 4.0 1.5 4.0 2.0 4.0 2.0	Max. Rated Three phase 200V 3.0 0.8 4.2 4.0 1.5 6.1 4.0 2.0 6.1 4.0 2.0 6.1	Max. Rated Three phase 200V Max. 3.0 0.8 4.2 16.7 4.0 1.5 6.1 25.0 4.0 2.0 6.1 25.0 4.0 2.0 6.1 25.0	Max. Rated Three phase 200V Max. Three phase 200V 3.0 0.8 4.2 16.7 4.0 1.5 6.1 25.0 4.0 2.0 6.1 25.0 4.0 2.0 6.1 25.0

Note 1)Rush current value is typical value in AC230V.

How to order

•Three phase 200 to 230 VAC

AX9000TS-U0

AX9000TH-(U0)

•Single phase 100 to 115 VAC

AX9000TS-J1-(U0)

Interface specifications U0: Parallel I/O (NPN) U1:Parallel I/O (PNP)(Coming soon) U2:CC-Link U3:PROFIBUS-DP U4: DeviceNet

Performance specifications

Descriptions	Descriptions			
Number of control axis	1 shaft and 540672 pulse/1 rotation			
Angle input increment	° (degree), pulse, index number			
Min. angle setting unit	0.001° and 1 pulse			
Speed input increment	seconds, rpm			
Speed setting range	0.01 to 100 second/0.01 to 300rpm (Note 1)			
Equal index number	1 to 255			
Maximum command value	7-digits input ±9999999			
Timer	0.01 to 99.99 sec.			
Programming language	NC language			
Programming method	Data can be set with an Teaching Pendant or personal computer, etc., using the RS-232-C port.			
Operation mode	Automatic, MDI, jog, single block, servo OFF, pulse string input mode			
Coordinates	Absolute, incremental			
	<5 type>			
Acceleration curve	$\label{eq:modified_sine} \textbf{Modified_sine}(\textbf{MS}) \textbf{, modified_constant_velocity}(\textbf{MC} \cdot \textbf{MC2}) \textbf{,}$			
	modified trapezoidal(MT), Trapecloid(TR)			
Status display	LED power display			
Operating indication	7-segments LED display (2 digit)			
Communication interface	RS-232C compliant			
I/O signal	Refer to page of each interface specifications.			
Program capacity	Approx. 6000 character (256 programs)			
Electronic thermal	Overheat protection of actuator			

Note 1) max. rotation speed differs depending on the actuator to be connected.

Parallel I/O (NPN specifications)

CN3 input signal

Pin No.	Signal name	Logic	Judgment
1 to 2	External power input + 24V±10%		
3 to 4	External power input GND		
5	Program no. selection input (bit 0)	Positive	Level
6	Program no. selection input (bit 1)	Positive	Level
7	Program no. selection input (bit 2)	Positive	Level
8	Program no. selection input (bit 3)	Positive	Level
•	Program no. setting input 2nd digit/	Positivo	Edge
5	program no. selection input (bit 4)	FUSILIVE	Level
10	Program no. setting input 1st digit/	Positivo	Edge
10	program no. selection input (bit 5)	FUSILIVE	Level
11	Reset input	Positive	Edge
12	Return to origin command input	Positive	Edge
13	Start input	Positive	Edge
44	Servo on input/program stop	Desitive	Level
14	input	Positive	Edge
15	Ready return/continuous rotation stop input	Positive	Edge
16	Answer input/position deviation count reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse string input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

I/O circuit specifications

Descriptions	1 circuit current (mA)	Max. point (Circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output (BK +, BK-)	75	2	150	

*The output circuit can only output 14 points out of 18 points simultaneously.

CN3 I/O circuit specifications

Input circuit

Rated voltage 24V±10%

Rated current 4mA (at DC24 V)

Rated voltage 24V±10% Rated current 50mA (Max.)

CN3 output signal

Pin No.	Signal name	Logic
33	M code output (bit 0)	Positive
34	M code output (bit 1)	Positive
35	M code output (bit 2)	Positive
36	M code output (bit 3)	Positive
37	M code output (bit 4)	Positive
38	M code output (bit 5)	Positive
39	M code output (bit 6)	Positive
40	M code output (bit 7)	Positive
41	Inposition input	Positive
42	Positioning complete output	Positive
43	Start input waiting output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output during indexing 1/origin position output	Positive
47	Output during indexing 2/servo state output	Positive
48	Ready output	Positive
49	Output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (incremental)

Pin No.	Signal name
23	A phase (line driver output)
24	-A phase (line driver output)
25	B phase (line driver output)
26	-B phase (line driver output)
27	Z phase (line driver output)
28	-Z phase (line driver output)

Pulse string input circuit

Output type: line driver Use line driver: DS26C31 Recommended line receiver: DS26C32 equivalent

30

TS-TH type driver

Parallel I/O (PNP specifications)(coming soon)

CN3 input signal

Pin No.	Signal name	Logic	Judgment
1 to 2	External power input GND(Note 1)		
3 to 4	External power input + 24V±10%(Note 1)		
5	Program no. selection input (bit 0)	Positive	Level
6	Program no. selection input (bit 1)	Positive	Level
7	Program no. selection input (bit 2)	Positive	Level
8	Program no. selection input (bit 3)	Positive	Level
0	Program no. setting input 2nd digit/	Desitive	Edge
9	program no. selection input (bit 4)	Positive	Level
10	Program no. setting input 1st digit/	Positivo	Edge
10	program no. selection input (bit 5)	Positive	Level
11	Reset input	Positive	Edge
12	Return to origin command input	Positive	Edge
13	Start input	Positive	Edge
44	Servo on input/program stop	Desitive	Level
14	input	Positive	Edge
15	Ready return/continuous rotation stop input	Positive	Edge
16	Answer input/position deviation count reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

Note 1) Wire differs from PNP specifications of AX9000GS/GH.

CN3 pulse string input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

I/O circuit specifications

Descriptions	1 circuit current (mA)	Max. point (Circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	
Output circuit	50	18	900	1106
Brake output (BK +, BK-)	75	2	150	1

*The output circuit can only output 14 points out of 18 points simultaneously.

CN3 I/O circuit specifications

Input circuit

Rated voltage 24V±10% Rated current 4mA (at DC24 V)

Rated voltage 24V±10% Rated current 50mA (Max.)

CKD

CN3 output signal

Pin No.	Signal name	Logic			
33	M code output (bit 0)	Positive			
34	M code output (bit 1)	Positive			
35	M code output (bit 2)	Positive			
36	M code output (bit 3)	Positive			
37	M code output (bit 4)	Positive			
38	M code output (bit 5)	Positive			
39	M code output (bit 6)	Positive			
40	M code output (bit 7)	Positive			
41	Inposition input	Positive			
42	Positioning complete output	Positive			
43	Start input waiting output	Positive			
44	Alarm output 1	Negative			
45	Alarm output 2	Negative			
46	Output during indexing 1/origin position output	Positive			
47	Output during indexing 2/servo state output	Positive			
48	Ready output	Positive			
49	Output	Positive			
50	M code strobe output	Positive			

CN3 encoder output signal (incremental)

Pin No.	Signal name
23	A phase (line driver output)
24	-A phase (line driver output)
25	B phase (line driver output)
26	-B phase (line driver output)
27	Z phase (line driver output)
28	-Z phase (line driver output)

Pulse string input circuit

Output type: line driver Use line driver: DS26C31 Recommended line receiver: DS26C32 equivalent

 $A X \rightarrow DI C (Output)$

CC-Link Specifications

Logic Positive

Positiv

Positive Positive

Positive

Positive

Positive

Positive Positive

Positive

Positive

Negative Negative

Positive

Positive Positive Positive Positive

Positive Positive

CC-Link specifications

Communication specifications

Descriptions	Specifications
Power supply	DC5V supplied from servo amp
CC-Link version	Ver.1.10
Occupied station no. (station type)	2 stations (remote device station)
Remote input no.	48 point
Remote output no.	48 point
Remote register I/O	Input 8 words/ Output 8 words
Communication speed	10M/5M/2.5M/625k/156kbps (select with the parameter setting)
Communication method	Broadcast polling method
Synchronization method	Frame synchronization method
Symbol method	NRZI
Line type	Bus type (EIA RS-485 compliant)
Incorrect control method	CRC(X ¹⁶ +X ¹² +X ⁶ +1)
Connection cable	CC-Link Ver.1.10 cable (shielded 3 wire twisted pair cable)
Transmission format	HDLC compliant
Remote station no.	1 to 63 (setting by parameter)
Connection	At only remote device station
quantity	Max.32 unit/2 station occupied
Monitor functions	Current position (degrees,. pulse), position deviation, program no., electric thermal, rotation speed, alarm

I/O signal

PLC-	AX(Input)			AV-	
Device No.	Signal name	Logic	Judgment	Device No.	Signal name
RYn0	Program no. selection input (bit 0)	Positive	Level	RXn0	M code output (bit 0)
RYn1	Program no. selection input (bit 1)	Positive	Level	RXn1	M code output (bit 1)
RYn2	Program no. selection input (bit 2)	Positive	Level	RXn2	M code output (bit 2)
RYn3	Program no. selection input (bit 3)	Positive	Level	RXn3	M code output (bit 3)
RYn4	Program no. setting input the second digit /program no. selection input (bit 4)	Positive	Edge level	RXn4	M code output (bit 4)
RYn5	Program no. setting input the first digit /program no. selection input (bit 5)	Positive	Edge level	RXn5	M code output (bit 5)
RYn6	Reset input	Positive	Edge	RXn6	M code output (bit 6)
RYn7	Return to origin command input	Positive	Edge	RXn7	M code output (bit 7)
RYn8	Start input	Positive	Edge	RXn8	Inposition input
RYn9	Servo on input /program stop input	Positive	Level edge	RXn9	Positioning complete output
RYnA	Ready return input /continuous rotation stop input	Positive	Edge	RXnA	Start input waiting output
RYnB	Answer input /position deviation count reset	Positive	Edge	RXnB	Alarm output 1
RYnC	Emergency stop input	Negative	Level	RXnC	Alarm output 2
RYnD	Brake release input	Positive	Level	RXnD	Output during indexing 1 /origin position output
RYnE	Not available			RXnE	Output during indexing 2 /servo state output
RYnF	Not available			RXnF	Ready output
				RX(n+1)0	Output
RY(n+1)0	Not available			RX(n+1)1	M code strobe output
RY(n+1)F				RX(n+1)2	Not available
				RX(n+1)F	
RY(n+2)0	Monitor output action request	Positive	Edge	RX(n+2)0	Monitor medium
RY(n+2)1	Command execution request	Positive	Edge	RX(n+2)1	Command completion
RY(n+2)2 to	Not available			RX(n+2)2 to	Not available
RY(n+2)F				RX(n+2)F	

"n" is a value that depends on the station no. setting

TB3 input circuit specifications (emergency stop)

Rated voltage 24V±10%, rated current 5mA or less

Safety precautions

Maintain sufficient distance between the communication cable and the power and motor cable.

- Do not bundle communication and power cable as it may cause communication errors and failures due to instability caused by noise.
- Refer to materials such as CC-Link laying manual for details on laying the cables.

AX9000TS

TS·TH type driver

DeviceNet specifications (available soon)

Communication specifications I/C

I/O signal

Descriptions	Specifications		
Power supply for communication	11 to 25 VDC		
Current consumption of power supply for communication	50mA or less		
Communication protocol	DeviceNet compliant: remote I/O		
Occupying nodes	Input 8 byte/output 8 byte		
Communication speed	500k/250k/125kbps (Select with the parameter setting.)		
Connection cable	DeviceNet compatible cable (Shielded 5 wire cable, 2 signal lines, 2 power lines, 1 shield)		
Node address	0 to 63 (set with parameter)		
Connection	Max.64 unit (including master)		

PLC→	PLC→AX(Input)					AX→PLC(Output)			
Byte No.	Signal name	Logic	Judgment		Byte No.	Signal name			
0.0	Program no. selection input (bit 0)	Positive	Level		0.0	M code output (bit 0)			
0.1	Program no. selection input (bit 1)	Positive	Level		0.1	M code output (bit 1)			
0.2	Program no. selection input (bit 2)	Positive	Level		0.2	M code output (bit 2)			
0.3	Program no. selection input (bit 3)	Positive	Level		0.3	M code output (bit 3)			
0.4	Program no. selection input (bit 4) /program no. setting input the second digit	Positive	Level edge		0.4	M code output (bit 4)			
0.5	Program no. setting input the first digit /program no. selection input (bit 5)	Positive	Level edge		0.5	M code output (bit 5)			
0.6	Reset input	Positive	Edge		0.6	M code output (bit 6)			
0.7	Return to origin command input	Positive	Edge		0.7	M code output (bit 7)			
1.0	Start input	Positive	Edge		1.0	Inposition input			
1.1	Servo on input /program stop input	Positive	Level edge		1.1	Positioning complete output			
1.2	Ready return input /continuous rotation stop input	Positive	Edge		1.2	Start input waiting output			
1.3	Answer input /position deviation count reset	Positive	Edge		1.3	Alarm output 1			
1.4	Emergency stop input	Negative	Level		1.4	Alarm output 2			
1.5	Brake release input	Positive	Level		1.5	Output during indexing 1 /origin position output			
1.6	Not available				1.6	Output during indexing 2 /servo state output			
1.7	Not available				1.7	Ready output			
					2.0	Output			
2.0	Not available				2.1	M code strobe output			
2.5					2.2 to	Not available			
					2.5				
2.6	Monitor output action request	Positive	Level		2.6	Monitor medium			
2.7	Command execution request	Positive	Edge		2.7	Command completion			

Logic Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive Positive

Positive

Positive Negative Negative

Positive

Positive Positive Positive Positive

Positive

Positive

TB3 input circuit specifications (emergency stop)

Rated voltage 24V±10%, rated current 5mA or less

Safety precautions

CKD

Maintain sufficient distance between the communication cable and the power and motor cable.

Do not bundle communication and power cable as it may cause communication errors and failures due to instability caused by noise.

Refer to materials such as DeviceNet laying manual for details on laying the cables.

CKD	34
-----	----

AX9000TS

AX9000TH

Driver

Communication specifications I/O signal

Description	Specifications	
Communication protocol	PROFIBUS DP-V0 compliant	
I/O data	Input 8 byte/output 8 byte	
Communication speed	12M/6M/3M/1.5M/500k/187.5k/ 93.75k/45.45k/19.2k/9.6kbps (auto baud rate function)	
Connection cable	PROFIBUS cable (shielded 2 wire twisted pair cable)	
Node address	0 to 125 (set with parameter)	
Connection quantity	Without repeater: Max. 32 stations for each segment With repeater Max. total of 126 stations	
Monitor function	Current position (degrees,. pulse), position deviation, program no., electric thermal, rotation speed, alarm	

nut)

Ρ	PLC→AX(Input)				4	AX→PLC(Output)			
	Byte No.	Signal name	Logic	Judgment		Byte No.	Signal name	Logic	
	0.0	Program no. selection input (bit 0)	Positive	Level		0.0	M code output (bit 0)	Positive	
	0.1	Program no. selection input (bit 1)	Positive	Level		0.1	M code output (bit 1)	Positive	
	0.2	Program no. selection input (bit 2)	Positive	Level		0.2	M code output (bit 2)	Positive	
	0.3	Program no. selection input (bit 3)	Positive	Level		0.3	M code output (bit 3)	Positive	
	0.4	Program no. selection input (bit 4) /program no. setting input the second digit	Positive	Level edge		0.4	M code output (bit 4)	Positive	
	0.5	Program no. setting input the first digit /program no. selection input (bit 5)	Positive	Level edge	ĺ	0.5	M code output (bit 5)	Positive	
	0.6	Reset input	Positive	Edge		0.6	M code output (bit 6)	Positive	
	0.7	Return to origin command input	Positive	Edge		0.7	M code output (bit 7)	Positive	
	1.0	Start input	Positive	Edge	ĺ	1.0	Inposition input	Positive	
	1.1	Servo on input /program stop input	Positive	Level edae		1.1	Positioning complete output	Positive	
	1.2	Ready return input /continuous rotation stop input	Positive	Edge		1.2	Start input waiting output	Positive	
	1.3	Answer input /position deviation count reset	Positive	Edge		1.3	Alarm output 1	Negative	
	1.4	Emergency stop input	Negative	Level		1.4	Alarm output 2	Negative	
	1.5	Brake release input	Positive	Level	ĺ	1.5	Output during indexing 1 /origin position output	Positive	
	1.6	Not available				1.6	Output during indexing 2 /servo state output	Positive	
	1.7	Not available			ĺ	1.7	Ready output	Positive	
					ĺ	2.0	Output	Positive	
	2.0 to	Not available				2.1	M code strobe output	Positive	
	2.5					2.2 to 2.5	Not available		
	2.6	Monitor output action request	Positive	Level	ĺ	2.6	Monitor medium	Positive	
	2.7	Command execution request	Positive	Edge		2.7	Command completion	Positive	

TB3 input circuit specifications (emergency stop)

Rated voltage 24V±10%, rated current 5mA or less

Safety precautions

Refer to materials such as "Installation Guideline for PROFIBUS DP/FMS" for details on laying the cables.

TS-TH type driver

Dimensions

TS type driver

• TH type driver

Note : The mounting pitch differs from conventional models (AX9000GS/AX9000GH)

AX9000TS

AX9000TH

Driver

TS-TH type driver

Footprint

• TS type driver

The driver is not dustproof and waterproof.

Protect the direct driver to keep out dust,water and oil fumes if there is any in your environment. Keep the temperture of the control box below 50 $^{\circ}$ C and maintain space as shown below, if placed in a control box.

Note 1) Provide extra space depending on your cable.

TS·TH type driver

Panel explanation

Parallel I/O (NPN,NPN specifications) •200 VAC •100 VAC Operating indication Operating indication 7 segment LED (2 digit) 7 segment LED (2 digit) Control power supply LED Control power supply LED CIKID Main power supply LED Main power supply LED Gain 1 dip switch Gain 1 dip switch (Convergence time) (Convergence time) Main power supply Main power supply Ô Q Gain 2 dip switch Gain 2 dip switch Control power supply Control power supply 낭 B (Load) (Load) A A CN1 RS-232C connector CN1 RS-232C connector 壨 CN2 resolver cable connector CN2 resolver cable connector Actuator Actuator Terminal for TB1 safety Output terminal Terminal for TB1 safety Output terminal Ground terminal Ground terminal 2-M4 2-M4 CN3 I/0 connector CN3 I/0 connector 80 TB2 terminal TB2 terminal CC-Link specifications DeviceNet specifications Operating indication 7 segment LED (2 digit) Operating indication 7 segment LED (2 digit) Control power supply LED Gain 1 dip switch Control power supply LED (Convergence time) CKD Main power supply LED Main power supply LED Gain 2 dip switch П Gain 1 dip switch 6 (Load) (Convergence time) Main power supply 0 0 Main power supply CN1 RS-232C connector Gain 2 dip switch 님 Control power supply B (Load) Control power supply A A CN1 RS-232C connector TB1 safety terminal CN2 resolver cable connector

Actuator 000 Terminal for TB1 safety Output terminal $\underline{\mathbb{N}}$ Transmission monitor LED Ground terminal CN3 CC-Link connector 2-M4 R 60 Terminal for TB3 emergency stop TB2 terminal Operating indication 7 segment LED (2 digit) 71/716

PROFIBUS-DP specifications

Cable specifications

Safety precautions

- When connecting the motor cable and driver, check that the cable's mark tubes and the driver's indications are correct.
- Fix the cable by the cable sheath near the actuator if the cable will be bent repeatedly.
- The outlet cable of the AX4009T and AX2000T are not flexible. Always fix these cables near the connector to prevent it from moving. Pulling and applying excessive force to the cable may damage the cable.
- When connecting the cable, insert the connector securely to the back. Tighten the connector's set screws and fixing screws.
- Do not modify cable by cutting or extending it as it may lead to faults or malfunctions.
- Refer to "How to order" for cable length of L.

Direct drive actuator Teaching Pendant **AX0180**

•Common for TS/TH type driver

Features

- (1) Easy programming Equal index programs are created easily by answering questions interactively with the dialog terminal.
- (2) No dedicated power supply required Power is supplied from the teaching pendant.
- (3) Back up possible Programs and parameters can be stored, and programs can be copied.The conventional model can also be used.
- (4) The conventional model can also be used.

Specifications

-		
Descriptions	AX0180	
Operation mode	Edit, display, parameter, operation or copy	
Program capacity	Equal index or NC program 2000 character (1 program)	
Program No.	Equal index program: program No. 0 to 999	
Indicator	16 character x 2 line (LCD display)	
	17key	
Input key	(Emergency stop key: 1, control key: 5 characters, numerals key: 11)	
Back up	Super capacitor (approx. 3 hours)	
Power supply	Supply from direct drive actuator driver	
Cable length	2m	
Ambient temperature range	0 to 50°C	
Ambient humidity range	20 to 90% (with no dew condensation)	
Conservation ambient temperature range -20 to 80°C		
Conservation ambient humidity range	t 20 to 90% (with no dew condensation)	
Atmosphere	With no corrosive gas and powder dust	
Weight	140g (does not include weight of cable)	

Dimensions

Teaching Pendant

Cable length 2m

X0180 Series Teaching Pendant

Teaching Pendant

direct drive actuator.

Create a program and -

store it in the direct

drive actuator.

Start a program

drive actuator.

cam curves.

stored in the direct

Use features of each

Confirm a I/O on/off.

Programs are created easily by inputting the followin settings:

[Example of program input] Create program Program No. (0 to 999)

Return 1. Origin to origin 2. Index position Return 1. CW direction 2. CCW Return speed (1.0 to 20.0) rpm Index number (1 to 255) Moving time [0.01 to 100] second Rotational 1. CW direction 2. CCW Stop process 1. Start waiting 2. Dwell Brake 1. Used 2. Vacant **Delay timer** [0.01 to 99.99] second M code 1. M code 2. Index position

Edit mode Twelve types of sample programs are selectable, so try these during adjustment. Edit mode

Programs are input and stored in easy steps. Operation mode

Programs are started easily by designating the program number.

Parameter mode Five types of cam curves are selectable. Drives that use features of each type are realized in one-touch operation.

Display mode The condition of I/O can display.

Direct drive actuator related parts model no. table

Related parts

Part name	Model	Model no.
PC communication cable (DOS/V)	AX Series	AX-RS232C-9P

(Note) This cable is not compact with C type drivers and old models (black drivers). Consult our sales representative when using for these drivers.

Mounting base

Part name	Model	Model no.		
Mounting base	AX Series (Note 1)	AX-AX****-BASE-* (Note 2)		

(Note 1) Mounting base is not compatible with AX4009T.

(Note 2) Consult our sales representative for the model number of the mounting base.

Noise filter

Part name	Model	Model no.
Noise filter for power supply (three phase 10A)	AX Series	AX-NSF-3SUP-EF10-ER-6
Noise filter for power supply (single phase 15A)	AX Series	AX-NSF-NF2015A-OD
Surge protector	AX Series	AX-NSF-RAV-781BXZ-4
Ferrite core for motor cable	AX Series	AX-NSF-RC5060

(Note 1)Parts of this page are lists of the parts which you can buy.

(Note 2)The parts below and over current/short circuit protection components are required to comply with the CE marking. Also, the driver must be placed withing the switch board. Refer to the manual or technical documents for Absodex AX Series TS/TH type to find out how to install them.

Explanation of technical term

Index precision

The indexing accuracy of the Absodex is the gap between the target position set by the NC program and the actual position.

This target position is the angle (sec.) from the standard station (return to origin position)

As shown to the right, the accuracy is calculated from the target position and the remainder of the actual result with the smallest and largest value.

A high precision encoder is used to measure the angle.

Repeatability

Repeat accuracy is the maximum dispersion expressed in angle (sec.) when stopping repeatedly on the specified target position under the same condition. The required accuracy may be repeat or indexing depending on the characteristics of the machine.

*Seconds (sec.)= Unit that expresses angle by degrees, minutes and seconds. 1degrees=60minutes=3600sec onds

AX Series

Applications (1)

Movement specifications 1 (operation of index unit)

Movement specifications

- ●4 index (equal index of 90°)
- Moving time 0.5 second
- Index once counter clockwise every time there is a start signal from the PLC.

Example of program

(Note) When using the Teaching note, $\overline{0}$ 1will be automatically configured by entering program no. 1.

Example of PLC operation signal

Initial process: process done only once in the beginning

Process name	I/O signal name	PLC output	PLC input	Remarks
(1) Program no. selection	 No. selection 0 bit No. selection 1 bit No. selection 2 bit No. selection 3 bit No. setting the first digit 			Select program No. 1 (Select the program number you will be using. Program No.1 is only selected as an example.)
(2) Return process	Start signal Positioning complete signal Start input waiting output			Return complete by positioning complete signal

Indexing process: process done each time when indexing

Process name	I/O signal name	PLC output	PLC input	Remarks
(3) Index	Start signal Positioning complete signal Start input waiting output			Index complete by positioning complete signal

43

(Note) Program selection and start signal input must be done when the stand by signal is on.

Movement specifications 2 (operation of oscillator unit)

Example of program

Note 1: Use the direct drive actuator with brakes.

When using the type with optional magnetic brakes, refer to the section "Using the magnetic brakes".

Note 2: If an emergency stop is input during braking, the brakes will stay on even after the emergency stop is reset.

When inputting start signal without selecting the program no. again, input the first input signal after resetting and releasing the brakes with the brake release input.

Brake release input			L
Start input	Г	「」 /	
	100msec and over		

Positioning complete output _

AX Series Selection guide (1)

Selection guide

Unit of elements of operating condition and symbol				
Load moment of inertia	(kg/m²)	J		
Moving angle	(°)	Ψ		
Moving time	(s)	t1		
Cycle time	(s)	to		
Load friction torque	(N•m)	TF		
Working torque	(N•m)	Тw		
Cam curve		Selection from (MS, MC, MT, TR)		

1. Load moment of inertia

Calculate the load movement of inertia, and temporarily select an actuator that can handle the inertia momentum.

2. Rotation speed

Max. rotation speed Nmax is obtained using movement angle $\psi(^\circ)$ and movement time $t_1(s).$

N•max. = Vm/ $\frac{\Psi}{6, t_1}$ (rpm)

V_m is a constant determined by the cam curve.

Confirm that Nmax does not exceed the actuator's specified maximum rotation speed.

(Cautions)

Actual movement time is the direct drive actuator command movement time plus setting.

The settling time differs based on the working condition, but generally is between 0.025 and 0.2s.

Movement time t1 used for selecting the model should be the direct drive actuator command movement time. The direct drive actuator command movement time is also used for settling the movement time in the NC program.

Note:	Frictional to the bea Friction to Tf = μ , Ff Ff = m•g	torque is applied to t aring or sliding surfac rque is calculated with and Rf (N•m)	he output shaft due ce or other friction. a relational formula.	
		μ : Coefficient of f	riction	
		Rolling friction	Sliding friction	
		μ = 0.03 to 0.05	μ = 0.1 to 0.3	
		Ff : Force applied on slidin	ng surface or bearings (N)	
	Rf : Average friction radius (m)			
	m :Weight (kg)			
		g : Gravity acceler	ation (m/s²)	

3. Load torque

a) The maximum load torque is obtained with the following formula.

b) The effective value of the load torque is obtained with the following formula.

Trms=
$$\sqrt{\frac{t_1}{t_0}} \cdot (r/Am/(J + J_M)/\frac{\psi \cdot \pi}{180, t_{12}} \cdot fc$$

Vm Am r is the below table value for here	Vm	Am	r is	s the	below	table	value	for	here
---	----	----	------	-------	-------	-------	-------	-----	------

Cam curve	Vm	Am	r
MS	1.76	5.53	0.707
MC	1.28	8.01	0.500
MT	2.00	4.89	0.866
TR	2.18	6.17	0.773

Jм Tм⊧ f is as follows.

JM : Output shaft moment of inertia (kg/m²)

TMF : Output shaft friction torque (N•m)

fc : Usage factor (fc = 1.5 during normal use)

If the temporarily selected actuator does not satisfy either of the following conditions, increase the actuator size and calculate again.

Maximum load torque <maximum output torque Effective value of load torque <continuous output torque

Note) The max. torque will be limited when rotating at high speeds.

Check with the model selection software when using at these speed ranges..

(Note) The working torque expresses, with a torque value, the external load, etc., applied on the output shaft as a load.

Working torque TW is calculated with the following formula: Tw=Fw×Rw(N•m)

Fw(N) : Force required for work

Rw(m) : Radius for work

(Example)

When setting the output shaft horizontal, the table workpiece , and jig, etc., are the working torque.

4. Regenerative electric power

Use the simplified formula below to calculate the regenerative power to determine if it can be used.

AX9000TS type driver

AX9000TS type driver does not have a regenerative resistor. Make sure that the regenerative energy calculated from the following simplified formula does not exceed the energy rechargeable with the capacitor (table below).

$$\mathsf{E} = \left(\frac{\mathsf{Vm} \cdot \boldsymbol{\psi} \cdot \boldsymbol{\pi}}{\mathsf{t}_1 \cdot 180}\right)^2, \quad \underline{(\mathsf{J} + \mathsf{J}_{\mathsf{M}})}{2} \quad (\mathsf{J})$$

Power supply specifications	Max. acceptable regenerative energy (J)	Remarks
AC200V	17.2	Value if the main power runs on 200VAC
100 VAC (-J1)	17.2	Value if the main power runs on 100VAC

Consult CKD if these conditions are not satisfied.

For AX9000TH type driver

For AX9000TH, there is a restriction of regenerative power due to the power consumption of the regenerative resistor.

Calculate using the simplified formula below.

$$W = \left(\frac{Vm \cdot \psi \cdot \pi}{t_1 \cdot 180}\right)^2 \cdot \frac{(J+J_M)}{2 \cdot t_0} (W)$$

W= 40

If this condition is not satisfied, reconsider operation and load conditions.

AX Series Selection guide (1)

For "MC2 curve " selection guide

What is MC2 curve?

The MC2 curve has a constant velocity in movement the same as the MC (modified constant velocity) curve, but by setting an acceleration/deceleration time, the constant velocity is set freely. With the MC (general name: MCV50) curve, the constant velocity section is 50%

Note: Accelleration/decelleration time is set to one-half or less of movement time. If accelleration/decelleration time setting exceeds one-half of movement time, the cam curve is automatically changed to an MS (modified sine wave) curve.

In the example, accelleration/decelleration time (ta) is set to 0.5 sec. for movement time (t1): 4 sec., a speed pattern that sets the constant velocity to 75% is created.

Selection guide

With the MC2 curve, the model is selected using the following formula:

Moving angle	:	ψ(°)
Cycle time	:	to(s)
Moving time	:	t1(s)
Acceleration or deceleration time	:	ta(s)
Load moment of inertia	:	J(kg•m²)
Output shaft moment of inertia	:	Jм(kg•m²)
Friction torque	:	Tf (N•m)
Working torque	:	T _w (N∙m)
Output shaft friction torque	:	TMF(N∙m)

Max. rotation speed: N•max. (rpm)

N•max. =
$$\frac{\Psi}{6 (t_1 - 0.863 t_a)}$$

Load torque (max.): T_m (N•m)

Tm =
$$\int 5.53 (J + JM) / \frac{\Psi \cdot \left(1 - \frac{t_1 - 2ta}{t_1 - 0.863ta}\right) \cdot \pi}{720, ta2} + Tf + TW \cdot fc + TMF$$

Load torque (effective): Trms (N•m)

 $Trms = \sqrt{\frac{2ta}{t_0}} \cdot \left[3.91 \left(J + JM \right) / \frac{\psi \cdot \left(1 - \frac{t_1 - 2ta}{t_1 - 0.863ta} \right) \cdot \pi}{720, ta2} \cdot fc \right]^2 + \left(\left(Tf + Tw \right) / fc + TMF \right)^2} \right]$

When " continuous rotation " is selected

Continuous rotation.

Continuous rotati	on has with or less.
1. Continuous rotation	: Continuously rotates at a set speed until the continuous rotation stop signal is input.
2. Equal index position stop	: If used with equal division designation, stops at an equal division when the continuous rotation stop signal is input.
3. Timing output	: If used with equal division designation, the timing output pulse is output at the equal division during rotation.

In the example, the shaft accelerates at acceleration time: ta to set speed: N, and when a continuous rotation stop is input, stops with deceleration time: td.

Selection guide

For continuous rotation, select the model with the following formula.

Rotation speed	:	N(rpm)
Cycle time	:	to(s)
Acceleration hour	:	ta(s)
Deceleration hour	:	td(s)
Load moment of inertia	:	J(kg•m²)
Output shaft moment of inertia	:	Jм(kg•m²)
Friction torque	:	Tf (N∙m)
Working torque	:	Tw (N∙m)
Output shaft friction torque	:	T _{MF} (N∙m)

Max. rotation speed :Nmax(rpm) (Note 1) N•max. = N

Load torque (max.): Tm (N•m)

Tm =
$$\left[5.53 (J + J_M) / \frac{6.82N/ta/\pi}{720, ta2} + Tf + Tw \right] \cdot fc + T_{MF}$$

Load torque (effective): Trms (N•m)

Trms =
$$\sqrt{\frac{2ta}{t_0}} \cdot \left[3.91 (J + J_M) / \frac{6.82N/ta/\pi}{720, ta2} \cdot fc \right]^2 + ((Tf + Tw)/fc + T_{MF})^2$$

The above formula applies for ta \leq td. If ta>TD, then replace ta with td, and select.

Note 1) The maximum rotation speed will be limited during continuous rotation. Use accordingly to actuator specifications.

AX Series Selection guide (2) Formula of moment of inertia

For conveyer

- *m*₁ : Chain weight
- m_2 : Workpiece total weight
- $I = (m_1 + m_2 + m_3 + \frac{m_4}{2}) \cdot R^2$
- m_3 : Jig (pallet) total weight
- m₄ : Sprocket A (drive) + B total weight
- R : Drive side sprocket radius

Direct drive actuator selection guide specifications check Table direct drive	(Note) Contact CKD for chain drives and gear drives.	
Your company name	Your name	
Division		
TEL	FAX	
Operating conditions		
1. Index 2. oscillator		
Movement angle Ψ (°)	no. of indexes	
Moving time t1 (sec.)		
Cycle time t0 (sec.)	cle time=moving time+dwelling time	
(Note) Index time is movement time + settling time.		
The settling time differs according to the working condition, but generally is between 0.05 and 0.2s.		
■ Load conditions	Dt Workpiece	
Table	Pallet jig	
Material 1. steel 2. aluminum		
Appearance Dt (mm)		
Plate thickness ht (mm)		
Weight m1 (kg)		
Workpiece		
Quantity nw (pc.)		
Max weight mw (kg/pc.)	(Fig.1) load conditions	
Installation center Dp (mm)		
Pallet fixture		
Quantity np (pc.)		
Max. weight mp (kg/pc.)		
Uners	(Fig. 2) installation attitudo: Harizantal (Fig. 2) installation attitudo: Variaal	
1. Horizontal (fig.2) 2. vertical (fig.3)		
External job		
1. NO / 2. YES		
(note) Eccentric load caused by gravity from vertical		
Dial plate support form bottom		
1. NO / 2. YES		
Coefficient of friction µ		
Work radius Rf (mm)		
	(Fig.4) installation rigidity: Low	
Device rigidity		
1. High 2. Low (note)		
(note) When using a spline, when unit cannot be fixed directly onto the device		
Fxtension with table shaft		
1. NO / 2. YES (fig.5)		
Actuator movement		
1. NO / 2. YES		
(note) When actuator is mounted on X-Y table or vertical	777777777777777777777777777777	
mechanism, etc., and mounted actuator moves.	Extension caused by (fig.5) shaft	
(note) If 2 is selected for any item, contact CKD	(note) The system overview and reference drawing should be attached for optimal model selection.	

Electric component

Related products

Ample variations and space efficient

Electric actuator ESSD/ELCR Series

NEW Electric actuator with the usability of a pneumatic component

Main features

- •Build in controller
- •Engineer it like a air cylinder
- •Flexible actuation
- Easy programming
- Improved reliability

お問合せは お近くの営業所へどうぞ

東 ●北上堂業所

- 〒024-0034 岩手県北上市諏訪町2-4-26 TEL (0197) 63-4147 FAX (0197) 63-4186
- ●仙台営業所 □ 日本ボリ 〒984-0015 仙台市若林区卸町2-2-1 (パックス2・1階) TEL (022) 239-1851 FAX (022) 239-1856
 ●山形営業所
- 〒990-0834 山形県山形市清住町3-5-19 TEL (023) 644-6391 FAX (023) 644-7273
- 北関東

●さいたま営業所

- 〒331-0812 さいたま市北区宮原町3-297-2(杉ビル65階)
- TSL (042 65 いたま) 12(2 名 赤町) 529-2 (4) 2006 58a)
 TEL (048) 652-3811
 FAX (048) 652-3816
 茨城営業所 〒300-0847 茨城県土浦市卸町1-1-1 (関鉄つくばビル4階C) TEL (029) 841-7490 FAX (029) 841-7495
- 宇都宮営業所
 〒321-0953 栃木県宇都宮市東宿郷3-1-7 (NBF宇都宮ビル3階) (028) 638-5770 FAX (028) 638-5790
- ●太田営業所 7373-0813 群馬県太田市内ケ島町946-2(大槻総合ビル1階) TEL (0276) 45-8935 FAX (0276) 46-5628

南 <u>関</u>東

- ●東京営業所 〒105-0013東京都港区浜松町1-31-1(文化放送メディアプラス4階) TEL (03) 5402-3628 FAX (03) 5402-0122
- →」川宮美所 「190-0022東京都立川市線町3-2-30(朝日生命立川線町ビル3階) TEL (042) 527-3773 FAX (042) 527-3782
 ●千葉営業所 下274-0825 千葉県船橋市前原西2-12-5(朝日生命津田沼ビル5階)
- 121.(047) 470-5070 FAX(047) 493-5190 ●横浜営業所 〒222-0033 横浜市港北区新横浜2-17-19(日総第15ビル4階) TEL (045) 475-3471 EAX (045) 475-3470
- ●厚木堂業所
- 〒243-0035 神奈川県厚木市愛甲1212-3 TEL (046) 226-5201 FAX (046) 226-5208 ●甲府営業所
- 中府呂朱州 〒409-3867 山梨県中巨摩郡昭和町清水新居1509 TEL (055) 224-5256 FAX (055) 224-3540
- ●東京支店 末示 又 || 〒105-0013 東京都港区浜松町1-31-1 (文化放送メディアプラス4階) TEL (03) 5402-3620 FAX (03) 5402-0120

CKD株式会社

北陸・信走

- ●長岡営業所 〒940-0088 新潟県長岡市柏町1-4-33(高野不動産ビル2階) TEL (0258) 33-5446 FAX (0258) 33-5381
- ●松本営業所 〒399-0033 長野県松本市大字笹賀5945 TEL (0263) 25-0711 FAX (0263) 25-1334
- ●富山営業所 〒939-8071 富山県富山市上袋100-35 TEL (076) 421-7828 FAX (076) 421-8402
- ●金沢営業所 〒920-0025 石川県金沢市駅西本町3-16-8 TEL (076) 262-8491 FAX (076) 262-8493 東 海

●名古屋営業所

- □1223年/10
 〒485-8551 愛知県小牧市応時2-250
 TEL (0568) 74-1371
 FAX (0568) 77-3291
 ●豊田営業所
 〒473-0912 愛知県豊田市広田町広田103
- TEL (0565) 54-4771 FAX (0565) 54-4755
 ●静岡営業所 〒422-8035 静岡県静岡市駿河区宮竹1-3-5 TEL (054) 237-4424 FAX (054) 237-1945
- ●浜松営業所 〒435-0016 浜松市東区和田町438 TEL (053) 463-3021 FAX (053) 463-4910
- ●四日市営業所 〒512-1303 三重県四日市市小牧町字高山2800
- TEL (059) 339-2140
 FAX (059) 339-2144
 ●名古屋支店
 〒485-8551 愛知県小牧市応時2-250
 TEL (0568) 74-1356
 FAX (0568) 77-3317
- 関 西
- ●大阪営業所
- 〒550-0001 大阪市西区土佐堀1-3-20 TEL (06) 6459-5775 FAX (06) 6446-1955 ●大阪東営業所
- 〒570-0083 大阪府守口市京阪本通1-2-3 (損保ジャパン守口ビル6階) TEL (06) 4250-6333 FAX (06) 6991-7477
- ●滋賀営業所 (2019日本77) 〒524-0033 滋賀県守山市浮気町字中ノ町300-21 (第2小島ビル4階) TEL (077) 514-2650 FAX (077) 583-4198
- ●京都営業所 〒612-8414 京都市伏見区竹田段川原町35-3 TEL (075) 645-1130 FAX (075) 645-4747
- ●奈良営業所 (アムビーボ), F639-1123 奈良県大和郡山市筒井町460-15 (オッシェム・ロジナ1階) TEL (0743) 57-6831 FAX (0743) 57-6821
 ●神戸営業所 F673-0016 兵庫県明石市松の内2-6-8 (西明石スポットビル3階)
- TEL (078) 923-2121 FAX (078) 923-0212
- ●大阪支店
- 〒550-0001 大阪市西区土佐堀1-3-20 TEL(06)6459-5770 FAX(06)6446-1945

●広島営業所 〒730-0029 広島市中区三川町2-6 (くれしん広島ビル3階)

中

- TEL (082) 545-5125 FAX (082) 244-2010
- ○岡山営業所 〒700-0916 岡山県岡山市北区西之町10-104 TEL (086) 244-3433 FAX (086) 241-8872 ●山口営業所
- 〒747-0801山口県防府市駅南町6-25 TEL (0835) 38-3556 FAX (0835) 22-6371

玉

- 匹 玉
- ●高松営業所 〒761-8071 香川県高松市伏石町2158-10 TEL (087) 869-2311 FAX (087) 869-2318
- ●松山営業所 松山宮栗所 〒790-0053 愛媛県松山市竹原2-1-33 (サンライト竹原1階) TEL (089) 931-6135 FAX (089) 931-6139
- 九 州
- ●福岡営業所 〒812-0013 福岡市博多区博多駅東1-10-27 (アスティア博多ビル5階) TEL (092) 473-7136 FAX (092) 473-5540 ●熊太営業所
- 〒869-1103 熊本県菊池郡菊陽町久保田2799-13 TEL (096) 340-2580 FAX (096) 340-2584
- 本 社

●本社・工場

- 〒485-8551 愛知県小牧市応時2-250 TEL (0568) 77-1111 FAX (0568) 77-1123
- ●営業本部
- A 3 4 10 〒485-8551 愛知県小牧市応時2-250 TEL (0568) 74-1303 FAX (0568) 77-3410 海外事業本部
- 〒485-8551 愛知県小牧市応時2-250
- TEL (0568) 74-1338 FAX (0568) 77-3461

フリーダイヤル 🚾 0120-771060 お客様技術相談窓口 受付時間 9:00~12:00/13:00~17:00 (土日、休日除く)

CKD Corporation

🗌 2-250 Ouji Komaki, Aichi 485-8551, Japan

PHONE +81-(0)568-74-1338 FAX +81-(0)568-77-3461

U.S.

- CKD USA CORPORATION
- HEADQUARTERS
 4080 Winnetka Avenue, Rolling Meadows, IL 60008 USA
 PHONE +1-847-368-0539 FAX +1-847-788-0575
- CINCINNATI OFFICE SAN ANTONIO OFFICE SAN JOSE OFFICE

Europe CKD EUROPE BRANCH

- De Fruituinen 28 Hoofdorp 2132NZ The Netherlands PHONE +31- (0) 23-5541490 FAX +31- (0) 23-5541491 CZECH OFFICE
- UK OFFICE
 GERMAN OFFICE

Malaysia

- Malaysia M-CKD PRECISION SDN.BHD. HEADQUARTERS Lot No.6,Jalan Modal 23/2, Seksyen 23, Kawasan, MIEL, Fasa 8, 40300 Shah Alam, Selangor Darul Ehsan, Malaysia PHONE +60-(0)3-5541-1468 FAX +60-(0)3-5541-1533
- JOHOR BAHRU OFFICE
 MELAKA OFFICE
 PENANG OFFICE

Thailand CKD THAI CORPORATION LTD.

- CKD THAI CONFORMATION LID.
 SALES HEADQUARTERS-BANGKOK OFFICE
 Suwan Tower, 14/1 Soi Saladaeng 1, North Sathorn Rd.,
 Bangrak 10500 Thailand
 PHONE +66-(0)2-267-6300 FAX +66-(0)2-267-6305
 LAEMCHABANG OFFICE
 NAVANAKORN OFFICE
 EASTERN SEABORD OFFICE
 LAMPHUN OFFICE

- LAMPHUN OFFICE
- KORAT OFFICE AMATANAKORN OFFICE

Singapore CKD SINGAPORE PTE LTD. 705 Sims Drive #03-01/02, Shun Li Industrial Complex, 387384 Singapore PHONE +65-6744-2623 FAX +65-6744-2486

Taiwan 台湾喜開理股份有限公司

本カタログに記載の製品及び関連技術は、外国為替及び外国貿易法のキャッチオール規制の対象となります。

to make sure they will never be used for the development or the manufacture of weapons for mass destruction.

regulations by Foreign Exchange and Foreign Trade Law of Japan.

●このカタログに掲載の仕様および外観を、改善のため予告なく変更することがあります。

•Specifications are subject to change without notice.

(百湾曽田理販灯行用成公司) TAIWAN CKD CORPORATION 台北縣新荘市中山路1段109號16樓-3 16F-3, No.109, Sec.1Jhongshan Rd., Shinjhuang City, Taipei County 242, Taiwan (R.O.C) PHONE +886-(0) 2-8522-8198 FAX +886-(0) 2-8522-8128

本カタログに記載の製品及び関連技術を輸出される場合は、兵器・武器関連用途に使用されるおそれのないよう、ご留意ください。 The goods and their replicas, or the technology and software in this catalog are subject to complementary export

If the goods and their replicas, or the technology and software in this catalog are to be exported, laws require the exporter

© CKD Corporation 2009 All copy rights reserved.

China

喜開理(上海)機器有限公司 **CKD(SHANGHAI)CORPORATION**

· 南京事務所 (NANJING OFFICE)
 · 杭州事務所 (HANGZHOU OFFICE)
 · 武漢事務所 (WUHAN OFFICE)
 · 青島事務所 (QINGDAO OFFICE)
 · 蘇州事務所 (SUZHOU OFFICE)

・長春事務所 (CHANGCHUN OFFICE) ・大連事務所 (DALIAN OFFICE)

・西安事務所 (XIAN OFFICE) ・重慶事務所 (CHONGQING OFFICE)

・成都事務所 (CHENGDU OFFICE) ・広州事務所 (GUANGZHOU OFFICE)

・深圳事務所 (SHENZHEN OFFICE) 東莞事務所(DONGGUAN OFFICE)

CKD KOREA CORPORATION

Korea

北京事務所 (BEIJING OFFICE)
 ・天津事務所 (TIANJIN OFFICE)

CLQSDANGTAL/COMPTICAL TOTAL TOTAL (1) (空業部):上海事務所 (SALES HEADQUARTERS / SHANGHAI OFFICE) 中国上海市徐汇区虹梅路1905号遠中科研大楼6楼601室 Room 601, Yuan Zhong Scientific Research Building, 1905 Hongmei Road, Shanghai, 200233, China PHONE +86-(0) 21-61911888 FAX +86-(0) 21-60905356 Hong Head States (1) 21-61911888 FAX +86-(0) 21-60905356

Website http://www.ckd.co.jp/

無錫事務所 (WUXI OFFICE) 南京事務所 (NANJING OFFICE)

3rd FL, Sam Young B/D, 371-20 Sinsu-Dong, Mapo-Gu, Seoul, 121-110, Korea PHONE +82-(0)2-783-5201~5203 FAX +82-(0)2-783-5204

2009.12.DCC