Quick response type direct drive actuator AX1000T, AX2000T or AX4000T series

DIRECT DRVE ACTUATOR, QUCK RESPONSE TYPE,AX1OOOT,AX2OOOT, AXQOOOT SERES

CKD Corporation

"Instant positioning! Quick response absodex" with even easier setup!

$A \times \underset{\substack{2000 T \\ 4000 \%}}{12}$

High precision, multi-functions
High precision absolute DD actuator that can index 360° anywhere and combine intermittent and continuous rotation.

Environmental design
Low profile, oil free, reusable and energy efficient....the features you need to build an ecological equipment.

NEW

Better compatibility for AX 1000T

Easier service and maintenance thanks to improved compatibility among drivers, actuators and cables.

1. Shorter tact time for your equipment

Reduce time loss with improved response

"Instant positioning"; positioning time reduced by 75%.
Reduce start up time by linking with peripheral component Easier to link with other components with the A/B phase encoder output.

2. Improved usability

Optimal tuning in no time
Newly added semi-automatic tuning function
Increased I/O signals
Newly added ready output, servo on, etc.

Easier setup

Adjustment software included (AX tools)
Control is on even when the motor is off Separate motor and control power supply

3. Safety standards

IEC standards, category 3 for "safe torque off function"

4. Conformity marks

UL/cUL, CE compliant
c~Uus
c UL Us Listed
C ϵ

TÜVRheinland

5. Downsized GH/WGH type drivers

65% smaller volume, 50 mm shorter depth

What's new in the TS/TH driver?

- Quick response

Improved response and reduced stabilization time with the faster CPU allows you to reduce tact time even further.

- Compact and light weight Footprint of large models with max. output torque of $150 \mathrm{~N} \cdot \mathrm{~m}$ ore more has been reduced by 65.
(Compared to CKD's GH type driver)
Due to, light weight was made.
- Mounting hole eliminates the
task of using a mounting
bracket
- An encoder output is added.

By adding the $A-B$ phase output for current position, position control using pulse is now easier and certain.

- UL/cUL Certified

- The actuator is certified by the following standards.
- UL1004-1
- CSA 22.2 No. 100
(File no. : E328765)
- The driver is certified by the following standards.
UL508C
CSA 22.2 No. 14
(File no. : E325064)
- Separate main power supply and control power supply
It is now possible to cut off only the main power supply
- 7 segment LED2-digit display Improved visibility and indication of alarm details makes maintenance easier. The set value for gain adjustment will be shown on the LED as well.
- Terminal for safety Create a power cut off circuit easily with the STO function. (safe torque off)

CC-Link Ver1.10

DeviceNet
DediceNet
PROFT ${ }^{8}$
-
PROFIBUS DP

Monitor with serial communication

Program no, position and alarm could be monitored from the PLC.
AX9000TS/TH-U2 U3 U4

Position
Program no.

\square

Convenience

Adjustment and installation support tool (AX tools) comes standard.
Get the right adjustments in less time.
Teaching note

- Create programs and set parameter
- Origin offset
- Trial run
- Semi-automatic tuning (TS type only) New By adjusting one parameter after auto tuning, the equipment can achieve higher performance.

Speed wave New
Review the tuning by measuring the actual change in velocity and convergent time.

FFT New

Deter resonance of mechanisms by setting a notch filter and low-pass filter.

I/O check New
I/O status of host component and can be checked.

Additional functions New
■Input/output function

- Ready output
- Servo state output
- Encoder output
- Servo on input
- Position deviation counter clear input

Parameter

- Setting positioning complete signal output duration Can be set $h \mathbf{0}$ to 100 ms range.
- Mode selection of in position input Position output ON all the time within the inposition range or ON only when it is stopped within the in-position range.

Additional program selection method

- Select programs with 6bit input (0 to 63)
- Operation start with selection input + start input Reduce tact time by reducing the time required to operate after program selection by abbreviating the program number setting input.

Prevents free-run when alarm is on
Slows down and stops the servo when an alarm caused by coasting goes off to prevent accidents

Features of the Absodex

Return to origin not required
Because the absodex has an absolute resolver that can detect the current position right after being turned on, you don't need to do an return to origin operation each and every time. You can also restart form the current position after and emergency stop also.

Smooth cam curve drive

5 types of cam curves are installed as standard. Minimizes the shock during rotation and stop.

- Model selection software (free)

Select the model you need with ease.

- Green technology

Energy saving
Power is consumed only during indexing. Almost no power is consumed while the output shaft is stopped.
■ No need to replace or dispose lubricant No more task of replacing and disposing lubricants. Eliminates pollution caused by oil leakage.
■Smaller components, smaller equipment Does not require origin detection sensor, reducer and etc.

Easy to change specifications, reusable Can be reused unlike mechanical indexes by changing specifications using computers and the teaching pendant.

System configuration

Basic settings

1. Input the program from a personal computer or from the teaching pendant.
2. Set required parameters the same way.
3. Set the appropriate gain.

Basic drive methods

1. The program which is selected to do wants from PLC.
2. Provide start signal from a PLC.
3. Postioning complete signal will be output from the driver after a movement.

Teaching Pendant

The parts below and over current/short circuit protection components are required to comply with the CE marking. Also, the driver must be placed withing the switch board. Refer to the manual or technical documents for Absodex AX Series TS/TH type to find out how to install them.

Product name	Application	Model no.	Manufacturer
Noise filter	Three phase/Single phase	AC200V to 230V	3SUP-EF10-ER-6

${ }^{*}$ FG clamp is used to earth the sheild for motor cable and resolver cable.

Configuration (set model no. selection)

	Name	Quantity
	Actuator body	1
	Driver (with controller)	1
	Motor cable and resolver cable	1 each
	Accessories; I/O connector, connector for power supply, connector for motor cable	

Programming tool

- Teaching pendant "AX0180" available.
- Adjustment and installation support tool (AX tools) available. (Free, OS:Windows)
- Create and save programs, set parameters, enter commands using a PC.
Communication cable RS-232C(for9 pin D-sub(2m) model no.:AX-RS232C-9P) is required.

Note) The communication cable is designed only to be used for Absodex. If other cables are used, the drive and pc may be damaged.
Note) Disconnect the teaching pendant or PC from CN1 during normal operation. Connect them only during setting and adjustment.
Note) Do not put the PC in "stand by" with the USBSerial conversion cable is connected. This will result in an error after returning from stand by.

Example of a STO timing chart

The Safe Torque Off function allows you to turn off the motor by the opening/closeing of a contact of an external safety component.
An example of a timing chart using the STO terminal (TB1) is shown below.
STO Input
(contact with external component)
Servo ON input
Ready return input
Servo status output
Ready output

Use the safe torque off function with the servo off in normal conditions.
Always conduct a risk assesment off of the entire equipment when using the safe torque off function.

Example

Direct drive actuator series variation

Ssatas	-	-	${ }^{18}$	${ }^{18}$	\%	${ }^{\text {s }}$	${ }^{55}$	
					(e)	$\underbrace{}_{\text {axisest }}$	(8)	(es)
	Oen		9	9				
					$\bigodot_{\text {axient }}$	$\underbrace{\infty}_{\text {axpest }}$	$\underbrace{}_{\text {axesest }}$	$e_{\text {axxisor }}^{\infty}$
	7							
Toctue								

Safety precautions

Always read this section before starting use.

Abstract

When designing and manufacturing devices using direct drive actuator, the manufacturer has an obligation to manufacture a safe device, and to check that the safety of the device's mechanical mechanism and the system operated by the electrical control that controls the device is secured. It is important to select, use, handle, and maintain the product appropriately to ensure that the CKD product is used safely. Observe warnings and precautions to ensure device safety. Check that device safety is ensured, and manufacture a safe device.

WARNING

This product is designed and manufactured as a general industrial machine part.
It must be handled by an operator having sufficient knowledge and experience in handling.

2 Use this product in accordance of specifications.

This product must be used within its stated specifications. It must not be modified or machined.
This product is intended for use as a general-purpose industrial device or part. It is not intended for use outdoors or for use under the following conditions or environment.
(Note that this product can be used when CKD is consulted prior to use and the customer consents to CKD product specifications. The customer must provide safety measures to avoid risks in the event of problems.)
(1)Use for special applications including nuclear energy, railway, aircraft, marine vessel, vehicle, medicinal devices, devices coming into contact with beverages or foodstuffs, amusement devices, emergency cutoff circuits (cutoff, open, etc.), press machines, press circuits or safety devices.
(2Use for applications where life or assets could be adversely affected, and special safety measures are required.
Observe association standards and regulations, etc., to ensure safe device design.
4 Do not remove devices until safety is confirmed.
(1)Inspect and service the machine and devices after confirming safety of the entire system related to this product.
2Note that there may be hot or charged sections even after operation is stopped.
(3Before starting device inspection or maintenance, turn off device power and other power to related devices, release compressed air, and check leakage current.
5 Observe the Instruction Manual and Precautions for each product to prevent accidents.
(1)Do not rotate the actuator outputs shaft by 30 rpm or more while power is off. The driver could fail or electrical shock result from actuator power generation.
2If the servomotor is turned off (including emergency stop or alarm) or brakes are turned off while a rotational force, such as gravity is applied, the output shaft may rotate by rotational force.
Conduct these operations flat where rotational force is not applied, or confirm safety before starting.
(3Unexpected movement may occur during gain adjustment or test operation, so keep hands, etc., away from the output shaft. When conducting operations with the actuator is not visible, confirm before starting that it is safe even if the output shaft turns.
4) The brakes of the type with brake do not necessarily hold the outputs shaft completely in all situations. When safety must be ensured, such as in maintenance with an application that rotates the output shaft in unbalanced mode, or when stopping the machine for a long time, it may not be sufficient to stop the shaft with brakes alone. Use the system flat or provide a mechanical lock.
(5It may take several seconds to stop in an emergency, depending on rotation speed and load.
6 Observe the precautions to prevent electrical shock.
(1)High voltage is supplied to the terminal block at the driver's front panel. Install the enclosed terminal cover before operation. Do not touch the terminal block while power is on.
Even after the power is turned off, a high voltage is applied until the charge accumulated in the internal capacitor is discharged. Wait at least five minutes after turning the power off before touching these sections.
(2When working with the side cover off, such as for maintenance and inspection or changing driver switches, turn the power off to prevent damages and injuries caused by electrical shock from high voltages.
(3Do not connect or disconnect connectors while power is on. Misoperation, faults, or electrical shock may occur
Before restarting a machine or system, check that measures are taken so that parts do not come off.

8 Install an over current protection component.
Wire according to "JIS B 9960-1: 2008 Safety of Machinery - Electrical Equipment of Machines - Part 1: General Requirements", and install an overcurrent protection device (such as molded case circuit breakers and circuit protectors) to the main•control power (terminal gland no. L1, L2, L3, L1C, L2C) and power supply for I/O (connector no. CN3-DV24V)
(Translation of an excerpt from JIS B9960-1 7.2.1 general requirements)
Overcurrent protection shall be provided in cases where the circuit current in a machine (electrical equipment) can exceed the lesser of either the rating of a component or allowable ampacity of the conductor. Ratings or settings to be assigned are set in 7.2.10.
9 Observe precautions on the pages that follow to prevent accidents.

The precautions are ranked as "DANGER", "WARNING" and "CAUTION" in this section.

DANGER: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries, or when there is a high degree of emergency to a warning.
WARNING: When a dangerous situation may occur if handling is mistaken leading to fatal or serious injuries.
CAUTION When a dangerous situation may occur if handling is mistaken leading to minor injuries or physical damage.

Note that some items described as "CAUTION" may lead to serious results depending on the situation. In any case, important information that must be observed is explained.

WARRANTY

Scope of warranty

Conditions related to the warranty term and scope are as follows:

1. Term of warranty

This product comes with a 1 year warranty from delivery. (this warranty is effective if the product is not operated for more than 8 hours a day. The warranty will expire if the product reaches its durability shown below) Durability (direct drive actuator)
Absodex brake with air brake, piston packing, valves

2. Scope of warranty

If any faults found to be the responsibility of CKD occur during the above warranty term, the part shall be repaired immediately by CKD free of charge.
Note that the following faults are excluded from the warranty term:
(1) Product abuse/misuse contrary to conditions/environment recommended in its catalogs/specifications.
(2) Faults caused by careless or incorrect handling, or improper control.
(3) Faults caused by factors other than delivered parts.
(4) Faults caused by improper product use.
(5) Faults due to modifications to the product structure, performance, or specifications by a party other than CKD after the product is delivered, or faults caused by repairs not designated by CKD.
(6) Damage that could have been avoided if the user's machine or equipment had functions and structures, etc., considered normal within the industry.
(7) Failure due to causes not foreseeable with the technology at the time of delivery.
(8) Failure due to fires, earthquakes, water damage, lightning, other acts of nature, acts of God, pollution, salt damage, gas damage, abnormal voltage, or other external forces.

The warranty here refers to the warranty of the actually delivered product, and does not include any damage resulting from a fault in the delivered product.

3. Warranty for exported products

(1) Product returned to our factories or companies/factories designated by CKD will be repaired. CKD is not liable for the costs and engineering required that is required for the return.

This warranty specifies basic conditions. If warranty details in individual specification drawings or specifications differ from these warranty conditions, specification drawings or specifications shall take priority.

Design \& Selection

1 The actuators and drivers are not waterproof. Provide waterproofing for use in places where water or oil could come in contact with these devices.
2 Current leakage and faults could occur if swarf or dust get onto the actuator or driver. Check that these do not come in contact with devices.
3 Turning the main power on and off frequently may cause damage to the element in the driver.
4 The output axis may move from the holding position even
without an external force if the power or servo is turned off.
5Optional magnetic brakes are used to enhance holding rigidity during output shaft stoppage.
Do not use these brakes to brake or stop a rotating output shaft.
6 The actuator and driver do not have a rust proof guarantee.
7 Equipment in which direct drive actuators are installed should have sufficient rigidity to realize full direct drive actuator performance. If the load equipment or frame's mechanical unique vibration is relatively low (200 to $\mathbf{3 0 0 H z}$ or less), resonance could occur in the direct drive actuator and load equipment or frame. Secure the rotary table and main unit installation bolts, and ensure sufficient rigidity without loosening, etc. [Fig. 1]

Installing the actuator [Fig.1]

Gain must be adjusted based on load table size, etc. [Fig.2] Even when the direct drive actuator is not directly installed, it should be installed on a highly rigid frame. [Fig.2]

8 When extending the outuput shaft, refer to table 1 as a reference for deciding the extended shaft diameter and length. Also, install a dummy inertia using fig. 3 as a reference.
[Table1] Reference of diameter for extended output shaft

Max. torque $[\mathrm{N} \cdot \mathrm{m}]$	Shaft extension(mm)				
	50	100	200	300	500
6	$\varphi 35$	$\varphi 40$	$\varphi 46$	$\varphi 50$	$\varphi 60$
9,12	$\varphi 40$	$\varphi 46$	$\varphi 55$	$\varphi 60$	$\varphi 70$
18,22	$\varphi 45$	$\varphi 55$	$\varphi 65$	$\varphi 70$	$\varphi 80$
45	$\varphi 55$	$\varphi 65$	$\varphi 75$	$\varphi 85$	$\varphi 95$
75	$\varphi 62$	$\varphi 75$	$\varphi 90$	$\varphi 95$	$\varphi 110$
150	$\varphi 75$	$\varphi 90$	$\varphi 110$	$\varphi 115$	$\varphi 130$
210	$\varphi 80$	$\varphi 95$	$\varphi 115$	$\varphi 125$	$\varphi 140$
300	$\varphi 90$	$\varphi 105$	$\varphi 125$	$\varphi 140$	$\varphi 155$
500	$\varphi 100$	$\varphi 120$	$\varphi 145$	$\varphi 160$	$\varphi 180$
1000	$\varphi 120$	$\varphi 140$	$\varphi 170$	$\varphi 185$	$\varphi 210$

[Fig.2] Mounting the actuator

9 If sufficient rigidity cannot be attained, machine resonance is suppressed to some degree by installing dummy inertia as close to the actuator as possible.
Examples of adding dummy inertia are shown below. When extending the output shaft, the following dimensions apply as a guide to the extended shaft's diameter:
AX2006T, AX4009T, AX2012T, AX2018T, AX ${ }_{\square} 022 \mathrm{~T}$, AX $\square 045 \mathrm{~T}: \Phi 60 \mathrm{~mm}$ and over, $A X \square 075 \mathrm{~T}, \mathrm{AX} \square 150 \mathrm{~T}$, AX1210T, AX4300T: $\Phi 90 \mathrm{~mm}$ and over, AX4500T: $\Phi 150 \mathrm{~mm}$ and over.
As a reference, dummy inertia is [load inertia] \times (0.2 to 1). [Fig.3]
[Fig.3] Example 1. for dummy inertia installation

When coupling with belts, gears or spline or when joining with a key, dummy inertia should be [load inertia] x (0.5 to 2).
Of speed changes with belts or gears, use load inertia as the actuator output shaft conversion value, and install dummy inertia on the actuator. [fig.4] [fig.5].

Note: Install dummy inertia as large as possible within the actuator's capacity. (Use steel with a large specific gravity).
[Fig.4] Example 2. for dummy inertia installation

[Fig.5] Example 3. for dummy inertia installation

10Do not place the actuator where it may contact strong magnetic field.
Do not pass cables with high voltage through the central hollow hole.
It may lead to malfunctioning, lower performance and damage.
11Use of surge protector is recommended when there is a risk of damage caused by lightning surge.

Connecting magnetic brakes

1) Do not use magnetic brakes to stop or control the rotating output shaft.
2) The driver will be damaged if the driver's BK+ and BK- and magnetic brakes are directly connected.
3) When connecting the following inductive load, such as a relay, to the external contact, set the coil's rated voltage to 24 VDC and the rated current to 100 mA or less, and provide measures against surge current.

Recommended circuit for magnetic brakes

Operation method

1. Control with NC program (M68, M69)

When the "M68" code is executed, BK+ to BK- will not be energized (brakes are applied), and when the "M69" code is executed, BK+ to BK- will be energized (brakes are released).
2. Control with brake release input (I/O connector/18 pin) If brake release is input while the brakes are applied, BK+ to BK- will be energized (brakes are released).
Olf magnetic brakes are frequently turned on and off, use a
solid-state relay (SSR) for the external contact.
Recommended model G3NA-D210BDC5-24 (OMRON)
Refer to the SSR instruction manual before using.

- Relay contact serial connection

OCheck that relay contact capacity is 10 times or more than the rated current. If less, use a multiple relay and use two or more relay contacts serially. Reed life can be extended.

13When passing a shaft through the hollow hole in the type with magnetic brakes, use a non-magnetic material (SUS303, etc.).
If magnetic material (S45C, etc.) is used, the shaft will be magnetized. This could cause iron powder to stick on the device or the peripheral devices to be affected by the magnetic properties.
14Note that around the magnetic brakes, iron powder, etc., could be attracted by the magnetic properties, or measuring instruments, sensors and other devices could be affected.
15Refer to the Technical Documents of the Absodex AX Series TS,TH type driver for other precautions.

Labor saving mechanisms warning

Always read this section before starting use.

Installation \& Adjustment

1 Connect the enclosed cable between the actuator and driver. Check that excessive force is not applied and the cable is not damaged. Do not modify the enclosed cable (change the length or material) because this could cause malfunction or faults.
2 Connect the correct power supply. Connecting a undesignated power supply could cause faults. Wait at least 5 seconds after turning power off before turning it on again.
3 Securely fix the direct drive actuator to the machine, and securely install loads such as the table before adjusting gain. Confirm that no interference occurs and that safety is secured even when flexible sections are rotated.
4 Do not tap the output shaft with a hammer, nor assemble it forcibly. Failure to observe this would prevent the expected accuracy or functions, and could cause faults.
5Do not place strong magnetic fields such as rare earth magnets near the actuator. Failure to observe this may cause failures to maintain expected accuracy.
6 The actuator may become hot depending on operating conditions. Provide a cover, etc., so that it will not be touched by accident.
7 The actuator may become hot depending on operating conditions.
8 Do not drill holes into the actuator. Contact CKD when machining is required.
9 Do not get on the actuator or flexible parts such the rotary table on the actuator during maintenance, etc.

10 Compatible type

- If the actuator and driver are combined mistakenly after program input (parameter setting), alarm 3 will go off. Check the actuator and driver combination.
Note: Alarm 3 is to prevent malfunction if the actuator and driver combination differ from when the program was input. Alarm 3 is reset when the program and parameters are input again.
- If operation is started with an incorrect actuator and driver combination after the program is input (after parameter setting), it may result in malfunctions and damages.
- When changing the cable length or type, order the cable separately.
- Actuator may catch fire if an incompatible driver is connected.
11When using a circuit breaker, select one that has higher harmonic measures for inverter use.
12 The position of the output shaft in the actuator dimension drawing does not indicate the actuator's origin. When using it at the output shaft shown in dimension drawings, the origin must be adjusted to the origin offset.
13The body outlet cable on AX4009T and AX200T series can not be moved. Always fix it at the connector section so that it will not move. Also, refrain from applying excess force onto the cable or pulling on the cable since it may damage it.
14Refer to the technical documents of the Abxodex AX Series TS, TH type for other precautions and conformity to standards.

achution

1 Do not disassemble the actuator, because this may compromise expected functions and accuracy. Any modification to the resolver could cause critical damage.
2 When testing withstand voltage of the machine or equipment containing the direct drive actuator, disconnect the power cable for the driver and check that the voltage is not applied to the driver. Failure to observe this could result in faults.

3 If alarm "4" (actuator overload: electronic thermal) goes off, wait for the actuator temperature to drop before restarting.
Alarm "4" could occur in the cases below. Remove the cause before resuming use.

- Resonance or vibration: Ensure sufficient installation rigidity.
- Tact or speed: Increase movement time or stopping time.
- Structure that locks the output shaft: Add M68, M69 commands.
4 Actuator coordinates are recognized after power is turned on so check that the output shaft does not move for several seconds after power is turned on.
5 Refer to the technical documents of the Abxodex AX Series TS, TH type for other precautions and conformity to standards.

Direct drive actuator

AX1000T Series actuator

High precision specification with high indexing accuracy and output shaft run out -Max. torque: 22, 45/75/150/210N•m

Actuator specifications

Descriptions		AX1022T	AX1045T	AX1075T	AX1150T	AX1210T
Maximum output torque	$\mathrm{N} \cdot \mathrm{m}$	22	45	75	150	210
Continuous output torque	$\mathrm{N} \cdot \mathrm{m}$	7	15	25	50	70
Max. rotation speed	rpm	240 (Note 1)		140 (Note 1)	120 (Note 1)	
Allowable axial load	N	600		2200		
Allowable moment load	$\mathrm{N} \cdot \mathrm{m}$	19	38	70	140	170
Allowable radial load	N	1000		4000		
Output shaft moment of inertia	$\mathrm{kg} / \mathrm{m}^{2}$	0.00505	0.00790	0.03660	0.05820	0.09280
Allowable load moment of inertia	$\mathrm{kg} / \mathrm{m}^{2}$	0.6	0.9	4.0	6.0	10.0
Index accuracy (Note 3)	sec.	± 15				
Repeatability (Note 3)	sec.	± 5				
Output shaft friction torque	$\mathrm{N} \cdot \mathrm{m}$	2.0		8.0		
Resolver resolution	P/rev	540672				
Motor isolations class		Class F				
Motor withstanding voltage		1500 VAC for one minute				
Motor isolation resistance		$10 \mathrm{M} \Omega 500$ VDC and over				
Working ambient temperature range		0 to $45^{\circ} \mathrm{C}$				
Ambient humidity range		20 to 85% RH with no dew condensation				
Storage ambient temperature range		-20 to $80^{\circ} \mathrm{C}$				
Storage ambient humidity range		20 to 90\%RH with no dew condensation				
Atmosphere		No corrosive gas, flammable or powder dust				
Weight	kg	8.9	12.0	23.0	32.0	44.0
Run out of output shaft	mm	0.01				
Run out of output shaft surface	mm	0.01				
Protection		IP20				

Note1: The speed must be kept below 80 rpm during continuous rotation.
Contact CKD for CE certification requirements.
Note2: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.
Note3: The max ambient temperature is $40^{\circ} \mathrm{C}$ if used as an UL certified product.

How to order

- Set model no. (actuator, driver or cable)

Note on model no. selection
Note 1: Use the table below to select the appropriate driver.
Driver-power voltage table

Driver Type	TS type driver		TH type driver
	Three phasel single phase 200 to 230 VAC	Single phase 100 to 115 VAC	Three phase 200 to 230 VAC
AX1022T	Blank Note 2	J1	
AX1045T	Blank Note 2	J1	
AX1075T	Blank Note 2		
AX1150T			Blank
AX1210T			Blank

Note 2: Single phase 200 to 230 VAC is available for models with a torque of $45 \mathrm{~N} \cdot \mathrm{~m}$ or less.
Note 3: Flexible cable
Refer to page 35 for the dimensions of the cable.
Note 4: Clf the mounting base is "B" (with blackened mounting base), "P2" and "P3" can not be selected.

Symbol	Descriptions
ASize (max. torque)	
022	$22 \mathrm{~N} \cdot \mathrm{~m}$
045	$45 \mathrm{~N} \cdot \mathrm{~m}$
075	$75 \mathrm{~N} \cdot \mathrm{~m}$
150	$150 \mathrm{~N} \cdot \mathrm{~m}$
210	$210 \mathrm{~N} \cdot \mathrm{~m}$

BDriver type

TS	TS type driver
TH	TH type driver

CMounting base

Blank	Standard (without mounting base)
B	With blackened mounting base

DConnector direction

Blank	Standard (connector horizontal installation)
C	Cor

C \quad Connector bottom installation

ECable length

DM02	2 m			
DM04	4 m (standard length)			
DM06	6 m			
DM08	8 m			
DM10	10 m			
DM15	15 m			
DM20	20 m		FDriver power voltage	
:---:	:---			
Refer to the Driver-power voltage table on the left.				
GDowel hole				
Blank	Standard (without dowel hole)			
P1	1 on top			
P2	1 on bottom			
P3	1 each on both top and bottom			

HInterface specifications

U0	Parallel I/O (NPN specifications)
U1	Parallel I/O (PNP specifications)(Coming soon)
U2	CC-Link
U3	PROFIBUS-DP
U4	DeviceNet

Discrete driver model no.

- Three phase 200 to 230 VAC

$$
\begin{aligned}
& \text { AX9000TS =U0 } \\
& \text { AX9000TH =U0 }
\end{aligned}
$$

- Single phase 100 to 115 VAC

AX9000TS - J1-U0

Discrete cable model no.

- Motor cable

AX-CBLM5-DM04
-Resolver cable
AX-CBLR5-DM04
ECable change $\binom{$ Note: "04" for cable }{ length 4 m} length 4 m

AX1000T
 Series

Speed/max. torque characteristics

OAX1022TS

[$\mathrm{N} \cdot \mathrm{m}$]
*This graph shows the characteristics under 3 phase AC200V

*This graph shows the characteristics under 3 phase AC200V

AX1045TS

*This graph shows the characteristics under 3 phase AC200V
-AX1150TH

*This graph shows the characteristics under 3 phase AC200V

OAX1210TH

*This graph shows the characteristics under 3 phase AC200V

> (Note) moment load

(Fig. a)
$M(N \cdot m)=F(N) \times L(m)$
M : Moment load
F: Load
L: Distance from output shaft center

(Fig. b)
$\mathrm{M}(\mathrm{N} \cdot \mathrm{m})=\mathrm{F}(\mathrm{N}) \times(\mathrm{L}+0.02)(\mathrm{m})$
M : Moment load
F: Load
L: Distance from output shaft flange

- AX1045T

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

AX1000T
 Series

Dimensions

AX1075T

Rotating section
(Including hollow section)

- AX1150T

Rotating section
(Including hollow section)

6-M8 depth 12 (straight)

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Standard dimensions and dimensions with options

Direct drive actuator

AX2000T Series

High speed rotation(max. 300 rpm). low profile, large hollow diameter (\$30) OMax. torque: 6/12, $18 \mathrm{~N} \cdot \mathrm{~m}$
Compatible drier: TS type driver

Actuator specifications

Descriptions	AX2006T	AX2012T	AX2018T
Maximum output torque $\quad \mathrm{N} \cdot \mathrm{m}$	6.0	12.0	18.0
Continuous output torque $\quad \mathrm{N} \cdot \mathrm{m}$	2.0	4.0	6.0
Max. rotation speed rpm	300 (Note 1)		
Allowable axial load N	1000		
Allowable moment load $\mathrm{N} \cdot \mathrm{m}$	40		
Output shaft moment of inertia $\mathrm{kg} / \mathrm{m}^{2}$	0.00575	0.00695	0.00910
Allowable load moment of inertia $\mathrm{kg} / \mathrm{m}^{2}$	0.3	0.4	0.5
Index precision (Note 2) sec.	± 30		
Repeatability (Note 2) sec.	± 5		
Output shaft friction torque $\quad \mathrm{N} \cdot \mathrm{m}$	0.6		0.7
Resolver resolution P/rev	540672		
Motor isolation class	Class F		
Motor withstanding voltage	1500 VAC for one minute		
Motor isolation resistance	$10 \mathrm{M} \Omega 500$ VDC and over		
Ambient temperature range	0 to $45^{\circ} \mathrm{C}$		
Ambient humidity range	20 to 85% RH with no dew condensation		
Storage ambient temperature range	-20 to $80^{\circ} \mathrm{C}$		
Storage ambient humidity range	20 to 90\%RH with no dew condensation		
Atmosphere	No corrosive gas, flammable or powder dust		
Weight kg	4.7	5.8	7.5
Run out of output shaft mm	0.03		
Surface run out of output shaft mm	0.03		
Protection	IP20		

Note1: The speed must be kept below 80 rpm during continuous rotation.
Note2: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.
Note3: The max ambient temperature is $40^{\circ} \mathrm{C}$ if used as a UL certified product.

Speed/max. torque characteristics

-AX2006TS

[$\mathrm{N} \cdot \mathrm{m}$]
*This graph shows the characteristics under 3 phase AC200V OAX2018TS

OAX2012TS

*This graph shows the characteristics under 3 phase AC200V (Note)Moment load

(Fig. a)
$M(N \cdot m)=F(N) \times L(m)$
M : Moment load
F: Load

(Fig.b)
$M(N \cdot m)=F(N) \times(L+0.02)(m)$
M : Moment load
F: Load
*This graph shows the characteristics under 3 phase AC200V
Always read the precautions on Intro 9 to 13 before starting use

How to order

- Set model no.(actuator, driver, cable)

Note 1: Use the table below to select the appropriate driver.
Driver-power voltage table

	TS type driver	
Model	Three phase and single phase 200230 to VAC	Single phase 100115 to VAC
AX2006T	Blank	J1
AX2012T	Blank	J1
AX2018T	Blank	J1

Note 2: The cable is a flexible cable.
Refer to page 35 for dimensions of a cable. The body outlet cable is not a flexible cable.
Note 3: Designate surface treatment and mounting base surface treatment with \mathbf{C} and \boldsymbol{H}. By selecting the optional electroless nickel plating, higher resistance to rusting can be expected.
Note 4: "P2" and "P3" cannot be selected if "B" with blackened mounting base or "BS" electroless nickel plating surface treatment mounting base is designated for (C) Mounting base.
Note 5: Additionally machined sections may not have a treated surface.

Discrete actuator body model no.

- Discrete driver model no.
- Three phase 200 to 230 VAC

AX9000TS - UO

- Single phase 100 to 115 VAC

AX9000TS - J1-U0

- Interface specifications
*Custom orders are not CE, UL/cUL, RoHS certified. Consult with CKD for details.

Discrete cable model no. - Motor cable

AX-CBLM6-DM04
-Resolver cable
AX-CBLR6 - DM04
(DCable change
(Note: "04" for cable) length 4 m

Dimensions

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Dimensions

- AX2018T

Note 1) The origin of the actuator may differ from the dimensions shown above.
Origin can be configured randomly using the origin offset function.

Direct drive actuator

AX4000T Series

Resistance to load of large moment of inertia Wide variety of options Easier to pipe and wire with large inner diameter
-Max. torque: $9 / 22,45 / 75 \mathrm{~N} \cdot \mathrm{~m}$
-Compatible drier: TS type driver

Actuator specifications

Descriptions		AX4009T	AX4022T	AX4045T	AX4075T
Maximum output torque	$\mathrm{N} \cdot \mathrm{m}$	9	22	45	75
Continuous output torque	$\mathrm{N} \cdot \mathrm{m}$	3	7	15	25
Max. rotation speed	rpm		240 (Note 1)		140 (Note 1)
Allowable axial load	N	800			20000
Allowable moment load	$\mathrm{N} \cdot \mathrm{m}$	40	60	80	200
Output shaft moment of inertia	kg/m ${ }^{2}$	0.009	0.0206	0.0268	0.1490
Allowable load moment of inertia	kg/m ${ }^{2}$	0.35 (1.75) (Note 2)	0.60 (3.00) (Note 2)	0.90 (5.00) (Note 2)	5.00 (25.00) (Note 2)
Index accuracy (Note 4)	sec.				
Repeatability (Note 4)	sec.				
Output shaft friction torque	$\mathrm{N} \cdot \mathrm{m}$	0.8			10.0
Resolver resolution	P/rev				
Motor isolation class					
Motor withstanding voltage			1500 VAC	one minute	
Motor isolation resistance			$10 \mathrm{M} \Omega 500$	C and over	
Ambient temperature range				$5^{\circ} \mathrm{C}$	
Ambient humidity range			20 to 85\%RH with	dew condensation	
Storage ambient temperature range			-20	$0^{\circ} \mathrm{C}$	
Storage ambient humidity range			20 to 90\%RH with	dew condensation	
Atmosphere			No corrosive gas, fla	mable or powder dust	
Weight	kg	5.5	12.3	15.0	36.0
Brake total weight when set	kg	-	16.4	19.3	54.0
Run out of output shaft	mm				
Run out of output shaft surface	mm				
Protection					

Note1: The speed must be kept below 80 rpm during continuous rotation.
Note2: When using within the load conditions shown in the parenthesis, set parameter 72(multiplier for integral gain) to 0.3 (reference value).
Note3: Consult CKD each time when using parameter 72 (multiplier for integral gain) during continuous rotation.
Note4: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.
Note5: Max. ambient temperature is $40^{\circ} \mathrm{C}$ when used as a UL certified product.

Specifications (option)

Compatible models Descriptions	AX4022T/AX4045T	AX4075T
Type	Non-backlash dry non-excitation operation type	
Rated voltage V	DC24V	
Power supply wattage W	30	55
Rated current A	1.25	2.30
Static friction torque $\quad \mathrm{N} \cdot \mathrm{m}$	35	200
Armature release time (brake on) $\mathbf{m s e c}$	50 (reference value)	50 (reference value)
Armature suction time (brake off) msec	150 (reference value)	250 (reference value)
Holding precision Minute	45 (reference value)	
Max. cycle rate Time/min.	60	40

Note 1: When the output shaft is rotating, rubbing noise may be generated at the electromagnetic brake's disk and fixing section.
Note 2: When moving after brakes are turned OFF, the delay time parameter must be changed based on armature suction time.
Note 3: This is a nonbacklash type, but it may be hard to hold a set position if load is applied in the direction of rotation.
Note 4: When electromagnetic brakes function, the armature may contact the magnetic brake's fixed section and generate noise.
Note 5: Brakes are manually released by alternately screwing screws into manual release taps (3 positions). Lightly tighten screws until they stop, then turn them another 90°. When finished with manual release, remove the three bolts immediately and apply brakes.

How to order

- Set model no.(actuator, driver cable)

Note on model no. selection
Note 1: Use the table below to select the appropriate driver.
Driver-power voltage table

Driver Type Model	Three phase and single phase 200230 to VAC	
AX4009T	Blank Note 2	J 1
AX4022T	Blank Note 2	J 1
AX4045T	Blank Note 2	J 1
AX4075T	Blank Note 2	

Note 2: Single phase 200 to 230 VAC is available for models with a torque of $45 \mathrm{~N} \cdot \mathrm{~m}$ or less.
Note 3: The cable is a flexible cable
Refer to page 35 for dimensions of the cable.
The body outlet cable is not a flexible cable.
Note 4: Select surface treatment and mounting base surface treatment with \mathbf{C} and \boldsymbol{H}. By selecting the optional electroless nickel plating treatment, you can expect higher rust resistance compared to standard specifications.
Note 5: "P2" and "P3" cannot be selected if "B" with blackened mounting base or "BS" electroless nickel plating surface treatment mounting base is selected for (C) Mounting base.
Note 6: Additionally machined sections such as dowel holes may not have a treated surface. Note 7: Refer to the Option Table below and select required options. Option table

	AX4009T	AX4022T	AX4045T	AX4075T
Mounting base (B)	\times	\bigcirc	\bigcirc	\bigcirc
Mounting base (BS)	\times	\bigcirc	\bigcirc	\bigcirc
Brake (EB)	\times	\bigcirc	\bigcirc	\bigcirc

- Discrete actuator body model no.

Discrete driver model no.

- Three phase 200 to 230 VAC
AX9000TS -U0
- Single phase 100 to 115 VAC

©Body surface treatment Note 4

| Symbol | |
| :---: | :--- | Descriptions 1 (max. torque)

DCable length	
DM02	2 m
DM04	4 m (standard length)
DM06	6 m
DM08	8 m
DM10	10 m
DM15	15 m
DM20	20 m
EBrake	
Blank	Standard (without electromagnetic brake)
EB	With negative actuation type electromagnetic brake

FDriver power voltage
Refer the driver-power voltage table on the left.

GDowel hole

Blank	Standard (without dowel hole)
P1	1 on top
P2	1 on bottom (2 pc. on bottom for AX4009T)
P3	1 each on both top and bottom (2 piece on 1 pc. on top and bottom for AX4009T)

HBody surface treatment

©Interface specifications

U0	Parallel I/O (NPN specifications)
U1	Parallel I/O (PNP specifications)(Coming soon)
U2	CC-Link
U3	PROFIBUS-DP
U4	DeviceNet

- Motor cable

AX-CBLM6-DM04

- Resolver cable

AX-CBLR6 - DM04
OCable change
$\binom{$ Note: "04" for cable }{ length 4 m}

AX4000T series

Speed/max. torque characteristics

OAX4009TS

*This graph shows the characteristics under 3 phase AC200V

OAX4022TS

OAX4045TS

OAX4075TS

(Fig. a)
$M(N \cdot m)=F(N) \times L(m)$
M: Moment load
F: Load
L: Distance from output shaft center

(Fig. b)

Refer to the precautions on Intro 9 to 13 before starting use.

Dimensions

AX4009T

(Option dowel hole dimension)

- AX4022T-EB

With electromagnetic brake
Refer to the left drawings for options.

Note 1) The origin of the actuator may differ from the dimensions shown above.
Origin can be configured randomly using the origin offset function.

Dimensions

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

- AX4075T-EB

With electromagnetic brake
Refer to the left drawings for options.

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Direct drive actuator

AX4000T Series

Capable of handling large moment inertia
Wide variety of options
Easier to pipe and wire with large inner diameter
OMax. torque: 150/300/500N•m
-Compatible drier: TH type driver

Actuator specifications

Descriptions		AX4150T	AX4300T	AX4500T
Maximum output torque	$\mathrm{N} \cdot \mathrm{m}$	150	300	500
Continuous output torque	$\mathrm{N} \cdot \mathrm{m}$	50	100	160
Max. rotation speed	rpm	100 (Note 1)		70
Allowable axial load	N	20000		
Allowable moment load	$\mathrm{N} \cdot \mathrm{m}$	300	400	500
Output shaft moment of inertia	kg/m ${ }^{2}$	0.2120	0.3260	0.7210
Allowable load moment of inertia	kg/m ${ }^{2}$	75.00 (Note 2)	180.00 (Note 2)	300.00 (Note 2)
Index accuracy (Note 3)	sec.	± 30		
Repeatability (Note 3)	sec.	± 5		
Output shaft friction torque	$\mathrm{N} \cdot \mathrm{m}$	10.0		15.0
Resolver resolution	P/rev	540672		
Motor isolation class		Class F		
Motor withstanding voltage		1500 VAC for one minute		
Motor isolation resistance		$10 \mathrm{M} \Omega 500$ VDC and over		
Ambient temperature range		0 to $45^{\circ} \mathrm{C}$		
Ambient humidity range		20 to 85% RH with no dew condensation		
Storage ambient temperature range		-20 to $80^{\circ} \mathrm{C}$		
Storage ambient humidity range		20 to 90\%RH with no dew condensation		
Atmosphere		No corrosive gas, flammable or powder dust		
Weight	kg	44.0	66.0	115.0
Total weight with brake	kg	63.0	86.0	-
Run out of output shaft	mm	0.03		
Run out of output shaft surface	mm	0.05		
Protection		IP20		

Note1: The speed must be kept below 80 rpm during continuous rotation.
Note2: The default setting will be large inertia moment compatible
Note3: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.
Note4: The max. ambient temperature is $40^{\circ} \mathrm{C}$ if used as an UL certified product.

Electromagnetic brake specifications (option)

Compatible models Descriptions	AX4150T/AX4300T
Type	Non-backlash dry non-excitation operation type
Rated voltage V	DC24V
Power supply wattage W	55
Rated current A	2.30
Static friction torque $\quad \mathrm{N} \cdot \mathrm{m}$	200
Armature release time (brake on) msec	50 (reference value)
Armature suction time (brake off) msec	250 (reference value)
Holding precision Minute	45 (reference value)
Max. cycle rate Time/min.	40

Note 1: When the output shaft is rotating, rubbing noise may be generated at the electromagnetic brake's disk and fixing section.
Note 2: When moving after brakes are turned OFF, the delay time parameter must be changed based on armature suction time.
Note 3: This is a nonbacklash type, but it may be hard to hold a set position if load is applied in the direction of rotation.
Note 4: When electromagnetic brakes function, the armature may contact the magnetic brake's fixed section and generate noise.
Note 5: Brakes are manually released by alternately screwing screws into manual release taps (3 positions). Lightly tighten screws until they stop, then turn them another 90°. When finished with manual release, remove the three bolts immediately and apply brakes.

Read the precautions on Intro 9 to 13 during use.

How to order

- Set model no.(actuator, driver, cable)

Note on model no. selection
Note 1: Use the table below to select the appropriate driver.
Driver-power voltage table

Driver	TH type driver
Type Model	Three phase 200230 to VAC
AX4150T	Blank
AX4300T	Blank
AX4500T	Blank

Note 2: The cable is a flexible cable.
Refer to page 35 for dimensions of a cable.
Note 3: Select surface treatment and mounting base surface treatment with \mathbf{C} and © . By selecting the optional electroless nickel plating treatment, you can expect higher rust resistance compared to standard specifications.

Symbol	Descriptions
A Size (max. torque)	
150	$150 \mathrm{~N} \cdot \mathrm{~m}$
300	$300 \mathrm{~N} \cdot \mathrm{~m}$
500	$500 \mathrm{~N} \cdot \mathrm{~m}$
B Driver type	
TH	TH type driver
C Mounting base (can not be used with a dowel hole P2, P3)	
Blank	Standard (without mounting base)
B	With blackened mounting base
BS	Electroless nickel plating, surface treatment mounting base Use with body surface treatment S .

(DCable length
Note 2

DCable length

DM02	2 m
DM04	4 m

DM04 8 4m (standard length)
DM06 6 m

DM08	8 m

DM10 $\quad 10 \mathrm{~m}$

DM15	15 m
DM20	20 m

E)Brake

Blank	Standard (without electromagnetic brake)

EB \quad With negative actuation type electromagnetic brake

FDowel hole

Blank	Standard (without dowel hole)
P1	1 on top
P2	1 on bottom
P3	1 each on both top and bottom

GBody surface treatment

Blank	Standard (Rotating section-blackening fixed section outside circumference-paint)
S	Rotating section: electroless nickel plating, fixed section: nitrating

HInterface specifications

U0	Parallel I/O (NPN specifications)
U1	Parallel I/O (PNP specifications)(Coming soon)
U2	CC-Link
U3	PROFIBUS-DP
U4	DeviceNet (available soon)

Note 4: "P2" and "P3" cannot be selected if "B" with blackened mounting base or "BS" electroless nickel plating surface treatment mounting base is selected for (C) Mounting base.
Note 5: Refer to the Option Table below and select required options.
Option table

	AX4150T	AX4300T	AX4500T
Electromagnetic brake (-EB)	\bigcirc	\bigcirc	\times

Discrete cable model no. - Motor cable

AX-CBLM6-DM04
-Resolver cable
AX-CBLR6-DM04
DCable change
(Note: "04" for cable
*Custom orders are not CE, UL/cUL, RoHS certified. Consult with CKD for details. length 4 m)

AX4000T
 Series

Speed/max. torque characteristics

OAX4150TH

[rpm]

*This graph shows the characteristics under 3 phase AC200V

OAX4300TH

[rpm]

*This graph shows the characteristics under 3 phase AC200V

OAX4500TH

[rpm]

*This graph shows the characteristics under 3 phase AC200V

- AX4150T-EB

With electromagnetic brake
Refer to the left drawings for options.

Note 1) The origin of the actuator may differ from the dimensions shown above.
Origin can be configured randomly using the origin offset function.

Dimensions

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Dimensions

AX4500T

Note 1) The origin of the actuator may differ from the dimensions shown apooxedable if the optional base is installed. Origin can be configured randomly using the origin offset function.

Large direct drive actuator

AX400WT Series

Max. torque $1000 \mathrm{~N} \cdot \mathrm{~m}$
large hollow shaft handy for cable wiring and piping, and a variety of options
OMax. torque: 1000N•m
-Compatible drier: TH type driver

Actuator specifications

Note1: Refer to "Technical explanations" on page 49 for the details on index accuracy and repeatability.
Note2: The max. ambient temperature is $40^{\circ} \mathrm{C}$ if used as an UL certified product.

Speed/max. torque characteristics

-AX410WTH

*This graph shows the characteristics under 3 phase AC200V
(Note) moment load

(Fig. a)
$M(N \cdot m)=F(N) \times L(m)$
M: Moment load
F: Load
L: Distance from output shaft center

(Fig. b)
$M(N \cdot m)=F(N) \times(L+0.02)(m)$
M: Moment load
F: Load
L: Distance from output shaft flange

Safety precautions

WARNING

It may take a few seconds to stop depending on the speed and load conditions, even with emergency stop.

How to order

Set model no.(actuator, driver, cable)

Note on model no. selection

Note 1: The cable is a flexible cable. Refer to page 35 for dimensions of a cable.
Note 2: Select surface treatment and mounting base surface treatment with \mathbf{C} and \boldsymbol{E}. By selecting the optional electroless nickel plating treatment, you can expect higher rust resistance compared to standard specifications.
Note 3: "P2" and "P3" cannot be selected if "B" with blackened mounting base or "BS" electroless nickel plating surface treatment mounting base is designated for \mathbf{C} Mounting base.
Note 4: The dowel hole section may not have a surface treatment.
DCable length

DM02	2 m
DM04	4 m (standard length)
DM06	6 m
DM08	8 m
DM10	10 m
DM15	15 m
DM20	20 m

EDowel hole
Blank
:---:
P2
P3
FBody surface treatment
Blank
S

GInterface specifications

U0	Parallel I/O (NPN specifications)
U1	Parallel I/O (PNP specifications)(Coming soon)
U2	CC-Link
U3	PROFIBUS-DP
U4	DeviceNet

- Discrete actuator body model no.

Discrete driver model no. -Three phase 200 to 230 VAC AX9000TH $=U 0$

GInterface specifications

[^0]
Dimensions

AX410WT

Note 1) The origin of the actuator may differ from the dimensions shown above. Origin can be configured randomly using the origin offset function.

Direct drive actuator

TS•TH type driver

Interface specifications: Parallel I/O (NPN specifications)
Parallel I/O (PNP specifications)(Coming soon)
CC-Link
PROFIBUS-DP
DeviceNet

Features

- Separated main and control power supply
- Wiring methods changed from terminal block to connector
- Compact and light weight (resin body)
- 7 segment 2 -digit LED display
- Encoder output added (only for parallel I/O)
- Optional serial communication (circuit board integrated)
- Add a monitor for positioning information and alarm condition. (Only U2,U3,U4 option)

Common specifications

Descriptions		TS type driver AX9000TS	

Note 1: Single phase 200 to 230 VAC is available for models with a torque of $45 \mathrm{~N} \cdot \mathrm{~m}$ or less.
Note 2: Connecting $\mathbf{2 0 0}$ to 230 VAC to 100 to 115 VAC specifications (option -J1) will destroy the driver.
Note 3: (-J1) cannot be selected for models with a max. torque of $75 \mathrm{~N} \cdot \mathrm{~m}$ or more.
Note 4: If the power has been cut off while the actuator is rotating, the rotation may continue due to inertia.
Note 5: In some cases, the motor will move due to the remaining electricity in the drive, even after the power has been cut off.
Power supply wattage and breaker capacity
TS type driver

Actuator model no.	Driver model no.	Power supply wattage (KVA)		Rush current (A)		Breaker capacity
		Max.	Rated	Single phase 100V	Single phase and three phase 200V	Rated current (A)
AX2006T	AX9000TS	0.8	0.5	16(Note1)	56(Note1)	10
AX4009T,AX2012T,AX2018T, AX4009T,AX4022T		1.0	0.5			
AX1045T,AX4045T		1.5	0.5			
AX1075T,AX4075T		2.0	0.8	-		

Note 1)Rush current value is typical value in AC115V and AC230V.
TH type driver

Actuator model no.	Driver model no.	Power supply wattage (KVA)		Rated input current (A)	Driver output (A)	Rush current (A)	Breaker capacity
		Max.	Rated	Three phase 200V	Max.	Three phase 200V	Rated current (A)
AX4150T and AX1150T	AX9000TH	3.0	0.8	4.2	16.7	50	20
AX4300T and AX1210T		4.0	1.5	6.1	25.0		
AX4500T		4.0	2.0	6.1	25.0		
AX410WT		4.0	2.0	6.1	25.0		

Note 1)Rush current value is typical value in AC230V.

Parallel I/O (NPN specifications)

CN3 input signal

Pin No.	Signal name	Logic	Judgment
1 to 2	External power input + 24V $\pm 10 \%$		
3 to 4	External power input GND		
5	Program no. selection input (bit 0)	Positive	Level
6	Program no. selection input (bit 1)	Positive	Level
7	Program no. selection input (bit 2)	Positive	Level
8	Program no. selection input (bit 3)	Positive	Level
9	Program no. setting input 2nd digit/ program no. selection input (bit 4)	Positive	Edge Level
10	Program no. setting input 1st digit/ program no. selection input (bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Return to origin command input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/program stop input	Positive	Level Edge
15	Ready return/continuous rotation stop input	Positive	Edge
16	Answer input/position deviation count reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

CN3 pulse string input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

I/O circuit specifications

Descriptions	1 circuit current (mA)	Max. point (Circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	1106
Output circuit	50	18	900	
Brake output (BK +, BK-)	75	2	150	

*The output circuit can only output 14 points out of 18 points simultaneously.

CN3 output signal

Pin No.	Signal name	Logic
33	M code output (bit 0)	Positive
34	M code output (bit 1)	Positive
35	M code output (bit 2)	Positive
36	M code output (bit 3)	Positive
37	M code output (bit 4)	Positive
38	M code output (bit 5)	Positive
39	M code output (bit 6)	Positive
40	M code output (bit 7)	Positive
41	Inposition input	Positive
42	Positioning complete output	Positive
43	Start input waiting output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output during indexing 1/origin position output	Positive
47	Output during indexing 2/servo state output	Positive
48	Ready output	Positive
49	Output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (incremental)

Pin No.	Signal name
23	A phase (line driver output)
24	-A phase (line driver output)
25	B phase (line driver output)
26	-B phase (line driver output)
27	Z phase (line driver output)
28	-Z phase (line driver output)

CN3 I/O circuit specifications

- Input circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 4mA (at DC24 V)

Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 50mA (Max.)

- Pulse string input circuit

Max. input frequency
Rated voltage $5 \mathrm{~V} \pm 10 \%$ Line driver 1 Mpps Open collector 250 Kpps
Encoder output circuit

Output type: line driver
Use line driver: DS26C31
Recommended line receiver: DS26C32 equivalent

TS•TH type driver

Parallel I/O (PNP specifications)(coming soon)

CN3 input signal

Pin No.	Signal name	Logic	Judgment
$\mathbf{1}$ to 2	External power input GND(Note 1)		
3 to 4	External power input + 24V $\pm 10 \%$ (Note 1)		
5	Program no. selection input (bit 0)	Positive	Level
6	Program no. selection input (bit 1)	Positive	Level
7	Program no. selection input (bit 2)	Positive	Level
8	Program no. selection input (bit 3)	Positive	Level
9	Program no. setting input 2nd digit/ program no. selection input (bit 4)	Positive	Edge Level
10	Program no. setting input 1st digit/ program no. selection input (bit 5)	Positive	Edge Level
11	Reset input	Positive	Edge
12	Return to origin command input	Positive	Edge
13	Start input	Positive	Edge
14	Servo on input/program stop input	Positive	Level Edge
15	Ready return/continuous rotation stop input	Positive	Edge
16	Answer input/position deviation count reset input	Positive	Edge
17	Emergency stop input	Negative	Level
18	Brake release input	Positive	Level

Note 1) Wire differs from PNP specifications of AX9000GS/GH.
CN3 pulse string input signal

Pin No.	Signal name
19	PULSE/UP/A phase
20	-PULSE/-UP/-A phase
21	DIR/DOWN/B phase
22	-DIR/-DOWN/-B phase

I/O circuit specifications

Descriptions	1 circuit current (mA)	Max. point (Circuit)	Max. current (mA)	Max. current consumption (mA)
Input circuit	4	14	56	1106
Output circuit	50	18	900	
Brake output (BK +, BK-)	75	2	150	

*The output circuit can only output 14 points out of 18 points simultaneously.

CN3 output signal

Pin No.	Signal name	Logic
33	M code output (bit 0)	Positive
34	M code output (bit 1)	Positive
35	M code output (bit 2)	Positive
36	M code output (bit 3)	Positive
37	M code output (bit 4)	Positive
38	M code output (bit 5)	Positive
39	M code output (bit 6)	Positive
40	M code output (bit 7)	Positive
41	Inposition input	Positive
42	Positioning complete output	Positive
43	Start input waiting output	Positive
44	Alarm output 1	Negative
45	Alarm output 2	Negative
46	Output during indexing 1/origin position output	Positive
47	Output during indexing 2/servo state output	Positive
48	Ready output	Positive
49	Output	Positive
50	M code strobe output	Positive

CN3 encoder output signal (incremental)

Pin No.	Signal name
23	A phase (line driver output)
24	-A phase (line driver output)
25	B phase (line driver output)
26	-B phase (line driver output)
27	Z phase (line driver output)
28	-Z phase (line driver output)

CN3 I/O circuit specifications

- Input circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 4mA (at DC24 V)

Output circuit

Rated voltage $24 \mathrm{~V} \pm 10 \%$
Rated current 50mA (Max.)

Pulse string input circuit

Max. input frequency
Rated voltage $5 \mathrm{~V} \pm 10 \%$ Line driver 1 Mpps Open collector 250 Kpps

- Encoder output circuit

Output type: line driver
Use line driver: DS26C31
Recommended line receiver: DS26C32 equivalent

CC-Link specifications

Communication specifications

Descriptions	Specifications
Power supply	DC5V supplied from servo amp
CC-Link version	Ver.1.10
Occupied station no. (station type)	2 stations (remote device station)
Remote input no.	48 point
Remote output no.	48 point
Remote register l/O	Input 8 words/ Output 8 words
Communication speed	$10 \mathrm{M} / 5 \mathrm{M} / 2.5 \mathrm{M} / 625 \mathrm{k} / 156 \mathrm{kbps}$ (select with the parameter setting)
Communication method	Broadcast polling method
Synchronization method	Frame synchronization method
Symbol method	NRZI
Line type	Bus type (EIA RS-485 compliant)
Incorrect control method	CRC(X ${ }^{\left.16+X^{12}+X^{6}+1\right)}$
Connection cable	CC-Link Ver.1.10 cable (shielded 3 wire twisted pair cable)
Transmission format	HDLC compliant
Remote station no.	1 to 63 (setting by parameter)
Connection quantity	At only remote device station Max.32 unit/2 station occupied
Monitor functions	Current position (degrees,. pulse), position deviation, program no., electric thermal, rotation speed, alarm

I/O signal
PLC \rightarrow AX (Input)

Device No.	Signal name	Logic	Judgment
RYn0	Program no. selection input (bit 0)	Positive	Level
RYn1	Program no. selection input (bit 1)	Positive	Level
RYn2	Program no. selection input (bit 2)	Positive	Level
RYn3	Program no. selection input (bit 3)	Positive	Level
RYn4	Program no. setting input the second digit /program no. selection input (bit 4)	Positive	Edge level
RYn5	Program no. setting input the first digit /program no. selection input (bit 5)	Positive	Edge level
RYn6	Reset input	Positive	Edge
RYn7	Return to origin command input	Positive	Edge
RYn8	Start input	Positive	Edge
RYn9	Servo on input /program stop input	Positive	Level edge
RYnA	Ready return input /continuous rotation stop input	Positive	Edge
RYnB	Answer input /position deviation count reset	Positive	Edge
RYnC	Emergency stop input	Negative	Level
RYnD	Brake release input	Positive	Level
RYnE	Not available		
RYnF	Not available		
$\left\|\begin{array}{c} R Y(n+1) 0 \\ \text { to } \\ R Y(n+1) F \end{array}\right\|$	Not available		
$\mathrm{RY}(\mathrm{n}+2) \mathrm{O}$	Monitor output action request	Positive	Edge
RY($\mathrm{n}+2$) 1	Command execution request	Positive	Edge
$\begin{gathered} R Y(n+2) 2 \\ \text { to } \\ R Y(n+2) F \end{gathered}$	Not available		

AX \rightarrow PLC(Output)

Device No.	Signal name	Logic
RXn0	M code output (bit 0)	Positive
RXn1	M code output (bit 1)	Positive
RXn2	M code output (bit 2)	Positive
RXn3	M code output (bit 3)	Positive
RXn4	M code output (bit 4)	Positive
RXn5	M code output (bit 5)	Positive
RXn6	M code output (bit 6)	Positive
RXn7	M code output (bit 7)	Positive
RXn8	Inposition input	Positive
RXn9	Positioning complete output	Positive
RXnA	Start input waiting output	Positive
RXnB	Alarm output 1	Negative
RXnC	Alarm output 2	Negative
RXnD	Output during indexing 1 /origin position output	Positive
RXnE	Output during indexing 2 /servo state output	Positive
RXnF	Ready output	Positive
$\mathrm{RX}(\mathrm{n}+1) 0$	Output	Positive
$\mathrm{RX}(\mathrm{n}+1) 1$	M code strobe output	Positive
$\begin{gathered} R X(n+1) 2 \\ \text { to } \\ R X(n+1) F \end{gathered}$	Not available	
$\mathrm{RX}(\mathrm{n}+2) 0$	Monitor medium	Positive
$\mathrm{RX}(\mathrm{n}+2) 1$	Command completion	Positive
$\begin{gathered} R X(n+2) 2 \\ \text { to } \\ R X(n+2) F \end{gathered}$	Not available	

TB3 input circuit specifications (emergency stop)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Maintain sufficient distance between the communication cable and the power and motor cable.
Do not bundle communication and power cable as it may cause communication errors and failures due to instability caused by noise.
Refer to materials such as CC-Link laying manual for details on laying the cables.

TS•TH type driver

DeviceNet specifications (available soon)

Descriptions	Specifications
Power supply for communication	11 to 25 VDC
Current consumption of power supply for communication	50 mA or less
Communication protocol	DeviceNet compliant: remote I/O
Occupying nodes	Input 8 byte/output 8 byte
Communication speed	500k/250k/125kbps (Select with the parameter setting.)
Connection cable	DeviceNet compatible cable (Shielded 5 wire cable, 2 signal lines, 2 power lines, 1 shield)
Node address	0 to 63 (set with parameter)
Connection quantity	Max. 64 unit (including master)

I/O signal
PLC \rightarrow AX (Input)

Byte	Signal name	Logic	Jridgnent
No.			
0.0			

$A X \rightarrow P L C(O u t p u t)$		
$\begin{aligned} & \text { Byte } \\ & \text { No. } \end{aligned}$	Signal name	Logic
0.0	M code output (bit 0)	Positive
0.1	M code output (bit 1)	Positive
0.2	M code output (bit 2)	Positive
0.3	M code output (bit 3)	Positive
0.4	M code output (bit 4)	Positive
0.5	M code output (bit 5)	Positive
0.6	M code output (bit 6)	Positive
0.7	M code output (bit 7)	Positive
1.0	Inposition input	Positive
1.1	Positioning complete output	Positive
1.2	Start input waiting output	Positive
1.3	Alarm output 1	Negative
1.4	Alarm output 2	Negative
1.5	Output during indexing 1 /origin position output	Positive
1.6	Output during indexing 2 /servo state output	Positive
1.7	Ready output	Positive
2.0	Output	Positive
2.1	M code strobe output	Positive
$\begin{gathered} 2.2 \\ \text { to } \\ 2.5 \end{gathered}$	Not available	
2.6	Monitor medium	Positive
2.7	Command completion	Positive

TB3 input circuit specifications (emergency stop)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Maintain sufficient distance between the communication cable and the power and motor cable.
■ Do not bundle communication and power cable as it may cause communication errors and failures due to instability caused by noise.
\square Refer to materials such as DeviceNet laying manual for details on laying the cables.

Communication specifications

I/O signal

Description	Specifications
Communication protocol	PROFIBUS DP-V0 compliant
l/O data	Input 8 byte/output 8 byte
Communication speed	$12 \mathrm{M} / 6 \mathrm{M} / 3 \mathrm{M} / 1.5 \mathrm{M} / 500 \mathrm{k} / 187.5 \mathrm{k} /$ $93.75 \mathrm{k} / 45.45 \mathrm{k} / 19.2 \mathrm{k} / 9.6 \mathrm{kbps}$ (auto baud rate function)
Connection cable	PROFIBUS cable (shielded 2 wire twisted pair cable) $)$
Node address	0 to 125 (set with parameter)
Connection quantity	Without repeater: Max. 32 stations for each segment With repeater Max. total of 126 stations
Monitor function	Current position (degress,. pulse), position deviation, program no., electric thermal, rotation speed, alarm

PLC \rightarrow AX (Input)

Byte No.	Signal name	Logic	Judgment
0.0	Program no. selection input (bit 0)	Positive	Level
0.1	Program no. selection input (bit 1)	Positive	Level
0.2	Program no. selection input (bit 2)	Positive	Level
0.3	Program no. selection input (bit 3)	Positive	Level
0.4	Program no. selection input (bit 4) /program no. setting input the second digit	Positive	Level edge
0.5	Program no. setting input the first digit /program no. selection input (bit 5)	Positive	Level edge
0.6	Reset input	Positive	Edge
0.7	Return to origin command input	Positive	Edge
1.0	Start input	Positive	Edge
1.1	Servo on input /program stop input	Positive	Level edge
1.2	Ready return input /continuous rotation stop input	Positive	Edge
1.3	Answer input /position deviation count reset	Positive	Edge
1.4	Emergency stop input	Negative	Level
1.5	Brake release input	Positive	Level
1.6	Not available		
1.7	Not available		
$\begin{gathered} 2.0 \\ \text { to } \\ 2.5 \end{gathered}$	Not available		
2.6	Monitor output action request	Positive	Level
2.7	Command execution request	Positive	Edge

AX \rightarrow PLC(Output)

Byte No.	Signal name	Logic
0.0	M code output (bit 0)	Positive
0.1	M code output (bit 1)	Positive
0.2	M code output (bit 2)	Positive
0.3	M code output (bit 3)	Positive
0.4	M code output (bit 4)	Positive
0.5	M code output (bit 5)	Positive
0.6	M code output (bit 6)	Positive
0.7	M code output (bit 7)	Positive
1.0	Inposition input	Positive
1.1	Positioning complete output	Positive
1.2	Start input waiting output	Positive
1.3	Alarm output 1	Negative
1.4	Alarm output 2	Negative
1.5	Output during indexing 1 /origin position output	Positive
1.6	Output during indexing 2 /servo state output	Positive
1.7	Ready output	Positive
2.0	Output	Positive
2.1	M code strobe output	Positive
$\begin{gathered} 2.2 \\ \text { to } \\ 2.5 \end{gathered}$	Not available	
2.6	Monitor medium	Positive
2.7	Command completion	Positive

TB3 input circuit specifications (emergency stop)

Rated voltage $24 \mathrm{~V} \pm 10 \%$, rated current 5 mA or less

Safety precautions

Refer to materials such as "Installation Guideline for PROFIBUS DP/FMS" for details on laying the cables.

TS•TH type driver

Dimensions

TS type driver

- TH type driver

Installation hole machining drawing (Note 1)

Note : The mounting pitch differs from conventional models (AX9000GS/AX9000GH)

TS•TH type driver
 Footprint

Footprint

- TS type driver

The driver is not dustproof and waterproof.
Protect the direct driver to keep out dust, water and oil fumes if there is any in your environment.
Keep the temperture of the control box below $50^{\circ} \mathrm{C}$ and maintain space as shown below, if placed in a control box.

Note 1) Provide extra space depending on your cable.

TS•TH type driver

Panel explanation

- Parallel I/O (NPN,NPN specifications)

- 200 VAC

- CC-Link specifications

- PROFIBUS-DP specifications

-100 VAC

- DeviceNet specifications

Cable specifications

Cable dimensions
Cable min. bending radius

ASafety precautions

- When connecting the motor cable and driver, check that the cable's mark tubes and the driver's indications are correct.
- Fix the cable by the cable sheath near the actuator if the cable will be bent repeatedly.
- The outlet cable of the AX4009T and AX2000T are not flexible. Always fix these cables near the connector to prevent it from moving. Pulling and applying excessive force to the cable may damage the cable.
- When connecting the cable, insert the connector securely to the back. Tighten the connector's set screws and fixing screws.
- Do not modify cable by cutting or extending it as it may lead to faults or malfunctions.
- Refer to "How to order" for cable length of L.

Direct drive actuator Teaching Pendant AX0180

-Common for TS/TH type driver

Features

(1) Easy programming

Equal index programs are created easily by answering questions interactively with the dialog terminal.
(2) No dedicated power supply required Power is supplied from the teaching pendant.
(3) Back up possible

Programs and parameters can be stored, and programs can be copied.The conventional model can also be used.
(4) The conventional model can also be used.

Specifications

Descriptions	AX0180
Operation mode	Edit, display, parameter, operation or copy
Program capacity	Equal index or NC program 2000 character (1 program)
Program No.	Equal index program: program No. 0 to 999
Indicator	16 character x 2 line (LCD display)
Input key	17key (Emergency stop key: 1, control key: 5 characters, numerals key: 11)
Back up	Super capacitor (approx. 3 hours)
Power supply	Supply from direct drive actuator driver
Cable length	2m
Ambient temperature range	0 to $50^{\circ} \mathrm{C}$
Ambient humidity range	20 to 90\% (with no dew condensation)
Conservation ambient temperature range	-20 to $80^{\circ} \mathrm{C}$
Conservation ambient humidity range	20 to 90\% (with no dew condensation)
Atmosphere	With no corrosive gas and powder dust
Weight	140 g (does not include weight of cable)

Dimensions

Teaching Pendant

Teaching Pendant

Direct drive actuator related parts model no. table

- Related parts

Part name	Model	Model no.
PC communication cable (DOS/V)	AX Series	AX-RS232C-9P

(Note) This cable is not compact with C type drivers and old models (black drivers). Consult our sales representative when using for these drivers.

Mounting base

Part name	Model	Model no.
Mounting base	AX Series (Note 1)	AX-AX****-BASE-* (Note 2)

(Note 1) Mounting base is not compatible with AX4009T.
(Note 2) Consult our sales representative for the model number of the mounting base.

Noise filter

Part name	Model	Model no.
Noise filter for power supply (three phase 10A)	AX Series	AX-NSF-3SUP-EF10-ER-6
Noise filter for power supply (single phase 15A)	AX Series	AX-NSF-NF2015A-OD
Surge protector	AX Series	AX-NSF-RAV-781BXZ-4
Ferrite core for motor cable	AX Series	AX-NSF-RC5060

(Note 1)Parts of this page are lists of the parts which you can buy.
(Note 2)The parts below and over current/short circuit protection components are required to comply with the CE marking. Also, the driver must be placed withing the switch board. Refer to the manual or technical documents for Absodex AX Series TS/TH type to find out how to install them.

Explanation of technical term

Index precision

The indexing accuracy of the Absodex is the gap between the target position set by the NC program and the actual position.
This target position is the angle (sec.) from the standard station (return to origin position)
As shown to the right, the accuracy is calculated from the target position and the remainder of the actual result with the smallest and largest value.
A high precision encoder is used to measure the angle.

Repeatability

Repeat accuracy is the maximum dispersion expressed in angle (sec.) when stopping repeatedly on the specified target position under the same condition.
The required accuracy may be repeat or indexing depending on the characteristics of the machine.
*Seconds (sec.)= Unit that expresses angle by degrees, minutes and seconds. 1 degrees $=60$ minutes $=3600 \mathrm{sec}$ onds

Example of index accuracy measurement

Applications (1)

Movement specifications 1 (operation of index unit)

Movement specifications

-4 index (equal index of 90°)

- Moving time 0.5 second
- Index once counter clockwise every time there is a start signal from the PLC.

Example of program

(Note) When using the Teaching note, $\bar{O} 1$ will be automatically configured by entering program no. 1.

Example of PLC operation signal

Initial process: process done only once in the beginning

Indexing process: process done each time when indexing

Process name	I/O signal name	PLC output	PLC input	Remarks
(3) Index	- Start signal - Positioning complete signal - Start input waiting output			Index complete by positioning complete signal

Movement specifications 2 (operation of oscillator unit)

Movement specifications

- Repeat $-45^{\circ} \leftrightarrow 45^{\circ}$ every time there is a start signal from the PLC.
- Moving time 0.7 second
- Apply the brakes when stopping (Note 1)
- Enable emergency stop input. (Note 2)

Example of program

Main program	
$\overline{\mathrm{O}}$;	Use program No. "2".
G1015;	NC code's Unit A is set to angle (${ }^{\circ}$).
G11;	NC code's Unit F is set to time (sec.).
G901;	Set the absolute dimensions.
N1M69;	Brake release
A45F01.7;	Move to $45^{\circ} \mathrm{in} 0.7$ seconds.
M68;	Brake operation
MO1;	Waiting for start input from PLC
M69;	Brake release
A-45F01.7;	Move to 45° in -0.7 seconds.
M68;	Brake operation
MO1;	Waiting for start input from PLC
J1;	Jump to block of sequence No. 1
M301;	Program end

Note 1: Use the direct drive actuator with brakes
When using the type with optional magnetic brakes, refer to the section "Using the magnetic brakes".

Note 2: If an emergency stop is input during braking, the brakes will stay on even after the emergency stop is reset.
When inputting start signal without selecting the program no. again, input the first input signal after resetting and releasing the brakes with the brake release input.

Brake release input

Start input

Positioning complete output

Selection guide (1)

Selection guide

Unit of elements of operating condition and symbol		
Load moment of inertia	(kg/m²)	J
Moving angle	$\left({ }^{\circ}\right)$	ψ
Moving time	(s)	t1
Cycle time	(s)	to
Load friction torque	($\mathrm{N} \cdot \mathrm{m}$)	TF
Working torque	($\mathrm{N} \cdot \mathrm{m}$)	Tw
Cam curve		Selection from (MS, MC, MT, TR)

1. Load moment of inertia

Calculate the load movement of inertia, and temporarily select an actuator that can handle the inertia momentum.

2. Rotation speed

Max. rotation speed Nmax is obtained using movement angle $\boldsymbol{\Psi}\left({ }^{\circ}\right)$ and movement time $\mathbf{t}_{1}(\mathbf{s})$.
$\mathrm{N} \cdot \max .=\mathrm{Vm} / \frac{\Psi}{6, \mathrm{t}_{1}}$ (rpm)
\mathbf{V}_{m} is a constant determined by the cam curve.

Confirm that Nmax does not exceed the actuator's specified maximum rotation speed.

(Cautions)

Actual movement time is the direct drive actuator command movement time plus setting.

The settling time differs based on the working condition, but generally is between 0.025 and 0.2 s.
Movement time t1 used for selecting the model should be the direct drive actuator command movement time. The direct drive actuator command movement time is also used for settling the movement time in the NC program.

Note: Frictional torque is applied to the output shaft due to the bearing or sliding surface or other friction. Friction torque is calculated with a relational formula.
$\mathrm{Tf}=\mu, \mathrm{Ff}$ and $\mathrm{Rf}(\mathrm{N} \cdot \mathrm{m})$
Ff $=\mathbf{m} \cdot \mathrm{g}$

μ : Coefficient of friction	
Rolling friction	Sliding friction
$\mu=0.03$ to 0.05	$\mu=0.1$ to 0.3

Ff : Force applied on sliding surface or bearings (N)
Rf : Average friction radius (m)
m : Weight (kg)
g : Gravity acceleration ($\mathrm{m} / \mathrm{s}^{2}$)

3. Load torque

a) The maximum load torque is obtained with the following formula.

$$
\operatorname{Tm}=\left[A m \cdot\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180, \mathrm{t}_{12}}+\mathrm{T}_{F}+\mathrm{T}_{w}\right) / \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}
$$

b) The effective value of the load torque is obtained with the following formula.

$$
\text { Trms }=\sqrt{\frac{t_{1}}{t_{0}} \cdot\left(r / A m /\left(J+J_{M}\right) / \frac{\Psi \bullet \pi}{180, t_{12}} \cdot f c\right.}
$$

Vm Am r is the below table value for here.

Cam curve	Vm	Am	r
MS	1.76	5.53	0.707
MC	1.28	8.01	0.500
MT	2.00	4.89	0.866
TR	2.18	6.17	0.773

Jm Tmf f is as follows.
Jm : Output shaft moment of inertia ($\mathbf{k g} / \mathrm{m}^{2}$)
$\mathrm{TmF}_{\mathrm{mF}}$: Output shaft friction torque ($\mathrm{N} \cdot \mathrm{m}$)
fc : Usage factor ($\mathrm{fc}=1.5$ during normal use)
If the temporarily selected actuator does not satisfy either of the following conditions, increase the actuator size and calculate again.
Maximum load torque <maximum output torque
Effective value of load torque <continuous output torque
Note) The max. torque will be limited when rotating at high speeds.
Check with the model selection software when using at these speed ranges..
(Note) The working torque expresses, with a torque value, the external load, etc., applied on the output shaft as a load.

Working torque TW is calculated with the following formula:
$\mathrm{T} w=\mathrm{Fw} \times \mathrm{Rw}(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{Fw}(\mathrm{N})$: Force required for work
Rw(m) : Radius for work
(Example)
When setting the output shaft horizontal, the table workpiece , and jig, etc., are the working torque.

4. Regenerative electric power

Use the simplified formula below to calculate the regenerative power to determine if it can be used.

- AX9000TS type driver

AX9000TS type driver does not have a regenerative resistor. Make sure that the regenerative energy calculated from the following simplified formula does not exceed the energy rechargeable with the capacitor (table below).
$E=\left(\frac{V m \cdot \psi \cdot \pi}{t_{1} \cdot 180}\right)^{2}, \frac{\left(J+J_{M}\right)}{2}(J)$

Power supply specifications	Max, acceptable regenerative energy (J)	Remarks
AC200V	17.2	Value if the main power runs on 200VAC
100 VAC (-J1)	17.2	Value if the main power runs on 100VAC

Consult CKD if these conditions are not satisfied.

For AX9000TH type driver

For AX 9000 TH , there is a restriction of regenerative power due to the power consumption of the regenerative resistor.
Calculate using the simplified formula below.
$W=\left(\frac{\mathrm{Vm} \cdot \Psi \cdot \mathrm{T}}{\mathrm{t}_{1} \cdot 180}\right)^{2} \cdot \frac{\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right)}{2 \cdot \mathrm{t}_{0}}(\mathrm{~W})$
$W=40$
If this condition is not satisfied, reconsider operation and load conditions.

Selection guide (1)

(working conditions)
Table radius : $\mathrm{R}=0.4$ (m)
Table weight : Wt = $79(\mathrm{~kg})$
Jig radius of rotation : $\mathrm{Re}=0.325(\mathrm{~m})$
Jig weight : $\mathrm{Wj}=10$ (kg/pc.) (Including workpiece weight)
Jig number $\quad: ~ N=4$
(operation conditions)
Moving angle : $\boldsymbol{\Psi}=90\left({ }^{\circ}\right)$
Moving time : $\mathrm{t}_{1}=\mathbf{0 . 8 (s)}$
Cycle time : $\mathrm{t}_{0}=4$ (s)
Load friction torque: $\mathrm{T}_{\mathrm{F}}=\mathbf{0}(\mathrm{N} \cdot \mathrm{m})$
Working torque : $\mathrm{Tw}=0(\mathrm{~N} \cdot \mathrm{~m})$
Output shaft : TmF(N•m)
friction torque Follows actuator specifications Cam curve : MS (modified sine)

a) Table
b) Jig and workpiece
c) Total sum of moment of inertia $\mathrm{J}=\mathrm{J} 1+\mathrm{J} 2=6.32+4.225=10.545$

$$
\begin{array}{ll}
\mathrm{J} 1=\frac{\mathrm{W} t \times R 2}{2}=\frac{79 \times 0.42}{2}=6.32 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \tag{2}\\
\mathrm{J} 2=\mathrm{N} \times \mathrm{Wj} \times \mathrm{Re} 2=4 \times 10 \times 0.3252=4.225 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \\
\mathrm{J}=\mathrm{J} 1+\mathrm{J} 2=6.32+4.225=10.545 & \left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)
\end{array}
$$

Determine if the selected AX4300T can be used.

Total sum of load moment of inertia	$10.545 \geqq 180$	$\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Max. rotation speed	$33 \geqq 100$	(rpm)
Max. load torque	$231.3 \geqq 300$	$(\mathrm{~N} \cdot \mathrm{~m})$
Effective load torque	$70.7 \geqq 100$	$(\mathrm{~N} \cdot \mathrm{~m})$
Regenerative electric power	$16.23 \geqq 40$	(w)

Thus, AX4300T can be used.
$\mathrm{W} \geqq 40(\mathrm{~W})$

Max load torque

$$
\begin{aligned}
\mathrm{Tm} & =\left[\mathrm{Am} \cdot(\mathrm{~J}+\mathrm{JM}) \cdot \frac{\psi \cdot \pi}{180 \cdot \mathrm{t}_{12}}+\mathrm{T}_{F}+\mathrm{Tw}_{\mathrm{w}}\right] \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}} \\
& =\left[5.53 \times(10.545+0.326) \times \frac{90 \times \pi}{180 \times 0.82}+0+0\right] \times 1.5+10 \\
& =231.3(\mathrm{~N} \cdot \mathrm{~m})
\end{aligned}
$$

Effective load torque
Trms $=\sqrt{\frac{t_{1}}{t_{0}}} \cdot\left[r \cdot A m \bullet\left(J+J_{M}\right) \cdot \frac{\psi \cdot \pi}{180 \bullet t_{12}} \cdot f\right]^{2}+\left(T_{F} \cdot \cdot f+T_{w} \cdot f c+T_{M F}\right)^{2}$
Trms $=\sqrt{\frac{0.8}{4} \times\left[0.707 \times 5.53 \times 10.871 \times \frac{90 \times \pi}{180 \times 0.82} \times 1.5\right]^{2}+(0 \times 1.5+0 \times 1.5+10)^{2}}$

$$
=70.7(\mathrm{~N} \cdot \mathrm{~m})
$$

$\mathrm{N} \cdot \mathrm{max} .=\frac{\mathrm{Vm} / \Psi}{6 \cdot{ }_{1}}=1.76 \times \frac{90}{6 \times 0.8}=33(\mathrm{rpm})$
Confirm that Nmax does not exceed the direct drive actuator's maximum rotation speed.

Calculate the smallest model that can tolerate the load moment of inertia.
The AX allowable moment of inertia is $18.0\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ or over, so this load is allowable.

$$
\begin{aligned}
W & =\left(\frac{V m \cdot \psi \cdot \pi}{t_{1} \cdot 180}\right)^{2} \cdot \frac{\left(J+\mathrm{J}_{\mathrm{M}}\right)}{2 \cdot \mathrm{t}_{0}} \\
& =\left(\frac{1.76 \times 90 \times \pi}{0.8 \times 180}\right)^{2} \cdot \frac{10.871}{2 \times 4}=16.23(\mathrm{~W})
\end{aligned}
$$

For "MC2 curve " selection guide

What is MC2 curve?

The MC2 curve has a constant velocity in movement the same as the MC (modified constant velocity) curve, but by setting an acceleration/deceleration time, the constant velocity is set freely. With the MC (general name: MCV50) curve, the constant velocity section is 50%
Note: Accelleration/decelleration time is set to one-half or less of movement time. If accelleration/decelleration time setting exceeds one-half of movement time, the cam curve is automatically changed to an MS (modified sine wave) curve.
In the example, accelleration/decelleration time (ta) is set to 0.5 sec. for movement time (t_{1}): 4 sec., a speed pattern that sets the constant velocity to 75% is created.

Selection guide

With the MC2 curve, the model is selected using the following formula:

Moving angle	$: \Psi\left({ }^{\circ}\right)$
Cycle time	$: \mathrm{to}_{0}(\mathrm{~s})$
Moving time	$: \mathrm{t}_{1}(\mathrm{~s})$
Acceleration or deceleration time	$: \mathrm{ta}(\mathrm{s})$
Load moment of inertia	$: \mathrm{J}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Output shaft moment of inertia	$: \mathrm{JM}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Friction torque	$: \mathrm{Tf}(\mathrm{N} \cdot \mathrm{m})$
Working torque	$: \mathrm{Tw}(\mathrm{N} \cdot \mathrm{m})$
Output shaft friction torque	$: \mathrm{TmF}(\mathrm{N} \cdot \mathrm{m})$

Max. rotation speed: N•max. (rpm)
$N \cdot \max .=\frac{\psi}{6\left(\mathrm{t}_{1}-0.863 \mathrm{ta}\right)}$
Load torque (max.): $\mathrm{Tm}(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{Tm}=\left[5.53(\mathrm{~J}+\mathrm{JM}) / \frac{\psi \cdot\left(1-\frac{\mathrm{t}_{1}-2 \mathrm{ta}}{\mathrm{t}_{1}-0.863 \mathrm{ta}}\right) \cdot \pi}{720, \mathrm{ta} 2}+\mathrm{Tf}+\mathrm{TW}\right] \cdot \mathrm{fc}+\mathrm{TMF}$
Load torque (effective): Trms (N•m)
Trms $=\sqrt{\frac{2 \mathrm{ta}}{\mathrm{t}_{0}} \cdot\left[3.91(\mathrm{~J}+\mathrm{JM}) / \frac{\Psi \cdot\left(1-\frac{\mathrm{t} 1-2 \mathrm{ta}}{\mathrm{t}_{1}-0.863 \mathrm{ta}}\right) \cdot \pi}{720, \mathrm{ta} 2} \cdot \mathrm{fc}\right]^{2}+((\mathrm{Tf}+\mathrm{Tw}) / \mathrm{fc}+\mathrm{TMF})^{2}}$

When " continuous rotation " is selected

Continuous rotation.

Continuous rotation has with or less.

1. Continuous : Continuously rotates at a set speed until rotation the continuous rotation stop signal is input.
2. Equal index : If used with equal division designation, position stop stops at an equal division when the continuous rotation stop signal is input.
3. Timing output : If used with equal division designation, the timing output pulse is output at the equal division during rotation.
In the example, the shaft accelerates at acceleration time: ta to set speed: N, and when a continuous rotation stop is input, stops with deceleration time: td.

Selection guide

For continuous rotation, select the model with the following formula.

Rotation speed	$: \mathrm{N}(\mathrm{rpm})$
Cycle time	$: \mathrm{to}(\mathrm{s})$
Acceleration hour	$: \mathrm{ta}(\mathrm{s})$
Deceleration hour	$: \mathrm{td}(\mathrm{s})$
Load moment of inertia	$: \mathrm{J}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Output shaft moment of inertia	$: \mathrm{Jm}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
Friction torque	$: \mathrm{Tf}(\mathrm{N} \cdot \mathrm{m})$
Working torque	$: \mathrm{Tw}(\mathrm{N} \cdot \mathrm{m})$
Output shaft friction torque	$: \mathrm{TmF}(\mathrm{N} \cdot \mathrm{m})$

Max. rotation speed : $\operatorname{Nmax}(\mathrm{rpm})$ (Note 1)

$$
N \cdot \max .=N
$$

Load torque (max.): Tm (N•m)
$\mathrm{Tm}=\left[5.53\left(\mathrm{~J}+\mathrm{J}_{\mathrm{M}}\right) / \frac{6.82 \mathrm{~N} / \mathrm{ta} / \pi}{720, \mathrm{ta} 2}+\mathrm{Tf}+\mathrm{Tw}\right] \cdot \mathrm{fc}+\mathrm{T}_{\mathrm{MF}}$
Load torque (effective): Trms ($\mathrm{N} \cdot \mathrm{m}$)
Trms $=\sqrt{\frac{2 \mathrm{ta}}{\mathrm{t}_{0}} \cdot\left[3.91(\mathrm{~J}+\mathrm{Jm}) / \frac{6.82 \mathrm{~N} / \mathrm{ta} / \mathrm{T}}{720, \mathrm{ta} 2} \cdot \mathrm{fc}\right]^{2}+\left((\mathrm{Tf}+\mathrm{Tw}) / \mathrm{fc}+\mathrm{T}_{\text {MF }}\right)^{2}}$
The above formula applies for tastd. If ta>TD, then replace ta with td, and select.

Note 1) The maximum rotation speed will be limited during continuous rotation. Use accordingly to actuator specifications.

Selection guide (2)

Formula of moment of inertia

A When rotation center is own shaft

1. Circular plate Center of rotation
(cylinder)

2. Hollow circular plate (hollow cylinder)

$$
I=\frac{m\left(R^{2}+r^{2}\right)}{2}
$$

3. Direct hexagonal side finish body
4. Ring
5. Cylinder

6. Hollow cylinder

$$
I=\frac{m\left(R^{2}+r^{2}+I^{2} / 3\right)}{4}
$$

[m : Weight of object (kg)]
B When rotation center differs from own shaft

1. Shape of any (if small very well)

Center of rotation

2. Circular plate (cylinder)

3. Hollow circular plate
(Hollow cylinder)

4. Direct hexagonal side finish body

For conveyer

m_{1} : Chain weight
m_{2} : Workpiece total weight
$I=\left(m_{1}+m_{2}+m_{3}+\frac{m_{4}}{2}\right) \cdot R^{2}$
m_{3} : Jig (pallet) total weight
m_{4} : Sprocket A (drive) + B total weight
R : Drive side sprocket radius

- Operating conditions

1. Index 2. oscillator

Movement angle $\quad \Psi\left({ }^{\circ}\right)$
Moving time
t1 (sec.)
Cycle time t0 (sec.)

(Note) Index time is movement time + settling time.
The settling time differs according to the working condition, but generally is between 0.05 and 0.2 s .

- Load conditions	
Table	
Material	1. steel 2. aluminum
Appearance	Dt (mm)
Plate thickness	ht (mm)
Weight	m1 (kg)
Workpiece	
Quantity	nw (pc.)
Max. weight	mw (kg/pc.)
Installation center	$\mathrm{Dp}(\mathrm{mm})$
Pallet fixture	
Quantity	np (pc.)
Max. weight	mp (kg/pc.)

Others

Installation attitude

1. Horizontal (fig.2) 2. vertical (fig.3) \square

External job

1. NO / 2. YES

(note) Eccentric load caused by gravity from vertical installation, external load caused by caulking work.
Dial plate support form bottom
2. NO / 2. YES

Coefficient of friction μ
Work radius Rf (mm)

Device rigidity

1. High 2. Low (note)
(note) When using a spline, when unit cannot be fixed directly onto the device (Fig.4), when there is a mechanism such as a chuck on the table.
Extension with table shaft
2. NO / 2. YES (fig.5)

Actuator movement

1. NO / 2. YES
(note) When actuator is mounted on $X-Y$ table or vertical mechanism, etc., and mounted actuator moves.
(note) If 2 is selected for any item, contact CKD

(Fig.4) installation rigidity: Low

Extension caused by (fig.5) shaft
(note) The system overview and reference drawing should be attached for optimal model selection.

Electric component Related products

Ample variations and space efficient

Electric actuator
 ESSD/ELCR Series

NEW Electric actuator with the usability of a pneumatic component

Main features

-Build in controller

- Engineer it like a air cylinder
-Flexible actuation
-Easy programming
- Improved reliability

お問合せは

CKD株式会社

－北上営業所
T024－0034岩手県北上市䯅訪町2－4－26
TEL（0197）63－4147 FAX（0197）63－4186
－仙台営業所
〒984－0015 仙台市若林区卸町2－2－1（パックス2••階）
TEL（022）239－1851 FAX（022）239－1856
－山形営業所
T990－0834 山形県山形市清住町3－5－19
TEL（023）644－6391 FAX（023）644－7273
北 関 東
さいたま営業所
「331－0812 さいたま市北区宮原町3－297－2（杉ビル65階
TEL（048）652－3811 FAX（048）652－3816
茨城営業所
T300－0847茨城県土浦市卸町1－1－1（関鉄つくばビル4階C）
TEL（O29）841－7490 FAX（029）841－7495
$=1$
T321－0953 栃木県宇都宮市東宿郎3－1－7（NBF宇都宮ビル3階）
TEL（028）638－5770 FAX（028）638－5790
太田営業所
〒373－0813 群馬県太田市内ケ鳥町946－2（大槻総合ビル1階） 276）45－8935 FAX（0276）46－5628

南 関

T105－0013 東京都港区浜松町1－31－1（文化放送メディアブラス4階） TEL（03）5402－3628 FAX（03）5402－0122
－立川営業所
〒190－0022 東京都立川市錦町 $3-2-30$（朝日生命立川鐰町ビル 3 階） TEL（042）527－3773 FAX（042）527－3782
－千葉営業所
〒274－0825 千葉県船祜市前原西2－12－5（朝日生命津田沼ビル5階） TEL（047）470－5070 FAX（047）493－5190
－横浜営業所
〒222－0033 横㳋市港北区新横沃2－17－19（日総第15ビル4階）
TEL（045）475－3471 FAX（045）475－3470
－厚木営業所
T243－0035 神奈川県厚木市愛甲1212－3
TEL（O46）226－5201 FAX（046）226－5208
\rightarrow
T409－3867 山梨県中巨 摩郡昭和町清水新居1509
TEL（055）224－5256 FAX（055）224－3540
T105－0013
（O3） TEL（03）5402－3620 FAX（03）5402－0120

北陸•信
 長岡営業所

T940－0088 新渴県長岡市柏町1－4－33（高野不動産ビル2階）
TEL（0258）33－5446 FAX（0258）33－5381
－松本営業所
T399－0033 長野県松本市大字笹賀5945
TEL（0263）25－0711 FAX（0263）25－1334
－富山営業所
T939－8071 富山県富山市上袋100－35
TEL（076）421－7828 FAX（076）421－8402
－金沢営業所
920－0025 石川県金沢市駅西本町3－16－8
TEL（076）262－8491 FAX（076）262－8493
－名古屋営業所
T485－8551 愛知県小牧市応時2－250
TEL（0568）74－1371 FAX（0568）77－329
－豊田営業所
〒473－0912 愛知県豊田市広田町広田103
TEL（0565）54－4771 FAX（0565）54－4755
 TEL（054）237－4424 FAX（054）237－1945
－浜松営業所
〒435－0016 浜松市東区和田町438
TEL（053）463－3021 FAX（053）463－4910
－四日市営業所
〒512－1303 三重県四日市市小牧町字高山 2800
TEL（059）339－2140 FAX（059）339－2144
－名古屋支店
〒485－8551 愛知県小牧市応時2－250 TEL（0568）74－1356 FAX（0568）77－3317

〒550－0001 大阪市西区土佐堀1－3－20
TEL（06）6459－5775 FAX（06）6446－1955
大阪東呂業所
570－0083 大阪府守口市京阪本通1－2－3（損保ジャパン守ロビル6階）
滋賀営業所
〒524－0033 滋賀県守山市浮気町字中ノ町300－21（第2小島ビル4階） TEL（077）514－2650 FAX（077）583－4198
京都営業所
T612－8414 京都市伏見区竹田段川原町35－3
TEL（075）645－1130 FAX（075）645－4747
－奈良営業所
〒639－1123 奈良県大和郡山市筒井町460－15（オッシェム・ロジナ1階）
TEL（0743）57－6831 FAX（0743）57－6821
－神戸営業所
T673－0016兵庫県明石市松の内2－6－8（西明石スポットビル3階）
TEL（078）923－2121 FAX（078）923－0212
－大阪支店
〒550－0001 大阪市西区土佐堀1－3－20
TEL（06）6459－5770 FAX（06）6446－1945

T730－0029 広島市中区三川町2－6（くれしん広島ビル3階）
TEL（082）545－5125 FAX（082）244－2010
岡山営業所
〒700－0916 岡山県岡山市北区西之町10－104
TEL（086）244－3433 FAX（086）241－8872
一山口営業所
〒747－0801 山口県防府市駅南町6－25 TEL（0835）38－3556 FAX（0835）22－6371
－熊本営業所
〒869－1103 熊本県菊池郡菊陽町久保田2799－13
TEL（096）340－2580 FAX（096）340－2584

本

本社•工場
〒485－8551 愛知県小牧市応時2－250
TEL（0568）77－1111 FAX（0568）77－1123
－営業本部
〒485－8551 愛知県小牧市応時2－250
TEL（0568）74－1303 FAX（0568）77－3410
海外事業本部
〒485－8551 愛知県小牧市応時2－250 TEL（0568）74－1338 FAX（0568）77－3461

お客様技術相談窐口

CKD Corporation

2－250 Ouji Komaki，Aichi 485－8551，Japan
\square PHONE＋81－（0）568－74－1338 FAX＋81－（0）568－77－3461

U．S．A．

CKD USA CORPORATION

HEADQUARTERS
4080 Winnetka Avenue，Rolling Meadows，IL 60008 USA
PHONE＋1－847－368－0539 FAX＋1－847－788－0575
CINCINNATI OFFICE
SAN ANONOFFIC
Europe
CKD EUROPE BRANCH
De Fruittuinen 28 Hoofddorp 2132 NZ The Netherlands
PHONE +31 －（ 0 ） $23-5541490$ FAX +31 －（ 0 ）23－ 5541491
－CZECH OFFICE
－UK OFFICE
－GERMAN OFFICE

Malaysia

M－CKD PRECISION SDN．BHD．
HEADQUARTERS
Lot No．6，Jalan Modal 23／2，Seksyen 23，Kawasan，MIEL， Fasa 8，40300 Shah Alam，Selangor Darul Ehsan，Malaysia PHONE $+60-(0) 3-5541-1468$ FAX $+60-(0) 3-5541-1533$
－JOHOR BAHRU OFFICE
－MELAKA OFFICE
－MENAKA OFFICE

Thailand
CKD THAI CORPORATION LTD．
SALES HEADQUARTERS－BANGKOK OFFICE Suwan Tower，14／1 Soi Saladaeng 1，North Sathorn Rd．， Bangrak，Bangkok 10500 Thailand
HONE＋66－（0）2－267－6300 FAX＋66－（0）2－267－6305
LAEMCHABANG OFFICE
－EASTERN SEABORD OFFIC
EASTERN SEABORD OFFIC
－KORAT OFFICE
－AMATANAKORN OFFICE

Singapore

CKD SINGAPORE PTE LTD
705 Sims Drive \＃03－01／02，Shun Li Industrial Complex， 387384 Singapore
PHONE＋65－6744－2623 FAX＋65－6744－2486

Taiwan

台湾喜開理股份有限公司
TAIWAN CKD CORPORATION
台北縣新荘市中山路1段109號16樓－3
16F－3，No．109，Sec．1 Jhongshan Rd．，Shinjhuang City，Taipei County 242，Taiwan（R．O．C）
PHONE $+886-(0) 2-8522-8198$ FAX $+886-(0) 2-8522-8128$

China
喜開理（上海）機器有限公司
CKD（SHANGHAI）CORPORATION
営業部／上海事務所（SALES HEADQUARTERS／SHANGHAI OFFICE）中国上海市徐汇区虹梅路 1905 号遠中科研大楼 6 楼 601 室 Room 601，Yuan Zhong Scientific Reseach Building， 1905 Hongmei Road，Shanghai，200233，China PHONE＋86－（0）21－61911888 FAX＋86－（0）21－60905356

- 無錫事務所（WUXI OFFICE）
- 南京事務所（NANJING OFFICE）
- 杭州事務所（HANGZHOU OFFICE）
- 武漢事務所（WUHAN OFFICE）
- 青島事務所（QINGDAO OFFICE）

蘇州事務所（SUZHOU OFFICE）
北京事務所（BEIJING OFFICE）
天津事務所（TIANJIN OFFICE）

- 長春事務所（CHANGCHUN OFFICE）
- 大連事務所（DALIAN OFFICE）
- 西安事務所（XIAN OFFICE）
- 重慶事務所（CHONGQING OFFICE）
- 成都事務所（CHENGDU OFFICE）
- 広州事務所（GUANGZHOU OFFICE）
- 深圳事務所（SHENZHEN OFFICE）

東莞事務所（DONGGUAN OFFICE）
Korea
CKD KOREA CORPORATION
3rd FL，Sam Young B／D，371－20
Sinsu－Dong，Mapo－Gu，Seoul，121－110，Korea
PHONE＋82－（0）2－783－5201～5203 FAX＋82－（0）2－783－5204

本カタログに記載の製品及び関連技術は，外国為替及び外国貿易法のキャッチオール規制の対象となります。
本カタログに記載の製品及び関連技術を輸出される場合は，兵器•武器関連用途に使用されるおそれのないよう，ご留意ください。
The goods and their replicas，or the technology and software in this catalog are subject to complementary export regulations by Foreign Exchange and Foreign Trade Law of Japan．
If the goods and their replicas，or the technology and software in this catalog are to be exported，laws require the exporter to make sure they will never be used for the development or the manufacture of weapons for mass destruction．
－このカタログに掲載の仕様および外観を，改善のため予告なく変更することがあります。
－Specifications are subject to change without notice．© CKD Corporation 2009 All copy rights reserved．

[^0]: *Custom orders are not CE, UL/cUL, RoHS certified. Consult with CKD for details.

