Series

variation \quad| Rotary actuator |
| :---: |
| RRC Series |

Variation	Model no. JIS symbol		Size	Effective torque (0.5MPa) ($\mathrm{N} \cdot \mathrm{m}$)	Maximum oscillating angle Maximum oscillating angle $\left({ }^{\circ}\right)$ $\left(^{\circ}\right)$			Option		$\begin{aligned} & \frac{5}{0} \\ & \sum_{幺}^{0} \\ & \hline \end{aligned}$	-	
			90		180	270	A	P6				
	RRC			8	0.7							
Rack and pinion mechanism		t		32	3.1	-	\bullet	\bullet	O	\bigcirc	©	8
			63	5.6								

Safety precautions

Always read this section before starting use.
Refer to Ending 69 for cylinders and to Ending 78 for cylinder switches.

Rotary actuator rack \& pinion RRC Series

Design \& Selection

Do not brake or hold by sealing pneumatics into the product.If no stopping device is provided outside the product and braking is applied by sealing air in with valves, the stop position may not be held because of air leakage, possibly resulting in injury or damage to operator, component, or device.

A CAUTION

Do not apply torque exceeding rated output to the product.
If force exceeding rated output is applied, the product could be damaged.

- If oscillation angle repeatability is required, directly stop external load.
The initial oscillation angle could change even with products provided with adjustable angles.

If axial load (thrust) on the shaft exceeds the tolerable value, operation faults could occur. If such a load is unavoidable, use a structure with thrust bearing as shown in Fig. 1.

Fig. 1
■ Avoid applying bending (radial) load exceeding the allowable value onto the shaft end, or operation faults could occur.
If such a load is unavoidable, use a structure conveying only rotation as shown in Fig. 2.
When connecting the shaft end and load at any position in the oscillation range, use flexible coupling, etc., that will not twist off to prevent the shaft from breaking and bearings from wearing or seizure.

Fig. 2 Radial load

Install the external stopper away from the rotary shaft. If the stopper is installed near the rotary shaft, a torque generated by the product could be applied on the rotary shaft. This reaction on the stopper may cause damaging the rotary shaft or bearings, and possibly resulting in injury or damage to operator, equipment, or device.

■ If the load weight is large and oscillation is fast, large inertia could be generated and allowable absorption exceeded, possibly damaging the rotary actuator. Install a shock absorber to absorb inertia.

■ When installing a load or jig, etc., on the rotary actuator shaft, check that load is not applied as shown in Fig. 3.

Fig. 3
Avoid seizure at rotating sections.
Apply grease to rotating sections (pins, etc.) to prevent seizing.

Holding torque at the oscillation end is half the effective torque, so use with a load factor of 50% or less.

Installation \& Adjustment

A CAUTION

\square When adjusting the angle by supplying pressure, do not rotate the device more than necessary beforehand.
When adjusting while supplying pressure, the device could rotate and drop during adjustment, depending on how it is installed, possibly resulting in operator, component, or device injury or damage.

Do not loosen the angle adjustment hexagon bolt beyond the adjustment range.
If the bolt is loosened beyond the adjustment range, the angle adjustment hexagon bolt could be dislocated, possibly resulting in injury or damage to operator, component or device. The cylinder's oscillation angle will decrease when the angle adjustment hexagon bolt is rotated clockwise.

Observe steps (1) to (5) when adjusting the angle. If the angle is not adjusted this way, the seal washer may break after one or two adjustments.

Angle adjustment procedures:
(1) First loosen the hexagon nut as shown in Fig. 1.
(2) Separate the seal washer from the cap (2) as shown in Fig. 2.

(3) Turn the angle adjustment hexagon bolt, hexagon nut, and seal washer together as shown in Fig. 3, and adjust the angle. Check that the rubber section of the seal washer does not bite into the screw.
(4) After adjusting the angle, move the seal washer near the cap (2) by hand as shown in Fig. 4.
(5) Tighten as shown in Fig. 5 with the hexagon nut. Check that the rubber section of the seal washer does not bite
 into the screw section.

Securely tighten the hexagon nut after adjusting the angle. The hexagon nut may loosen and cause external leakage in prolonged use.

Note 1: An effective torque value is a product at working pressure 0.5 MPa .
Note 2: When using RRC-8 with maximum oscillating angle, working pressure to be 0.3 MPa and over.
Note 3: Adjustable angle is available as an option. Refer to page 13.
Maximum load Load which applies to shatt to be following number or less.

	Unit: N			F1
Model no.				
Load direction	RRC-8	RRC-32	RRC-63	
Thrust load F1	9.8	39.2	58.8	
Radial load F2	19.6	78.4	117.6	\square

Switch specifications

- 1 color/2 color indicator

Descriptions	Proximity 2 wire			Proximity 3 wire		Reed 2 wire		
	T1H/T1V	T2H/T2V	T2YH/T2YV	T3H/T3V	T3YH/T3YV	TOH/TOV	T5H/T5V	T8H/T8V
Applications	Programmade controller, relay, small solenoid vave	Programmable controller		Programmable controller,\qquad		Programmable controller, relay	Programmable controller, relay, IC circuit (without indicator light), serial connection	Programmable controller, relay
Output method	-			NPN output				
Power voltage	-	-		10 to 28 VDC				
Load voltage	85 to 265 VAC	10 to 30 VDC		30 VDC or less		12/24 VDC 110 VAC 5/12/24 VDC 110 VAC		2/24 VDC 110 VAC 220 VAC
Load current	5 to 100 mA	5 to $20 \mathrm{~mA} \mathrm{(Note} \mathrm{1)}$		100 mA or less	50 mA or less	5 to 50 mA 7 to 20 mA	50 mA or less 20 mA or less	5 to 50 mA 7 to 20 mA 7 to 10 mA
Current consumption	-	-		10 mA or less with 24 VDC				
Internal voltage drop	7V or less	4V or less		0.5 V or less		2.4 V or less	OV	3 V or less
Light	$\begin{array}{\|c\|} \hline \text { LED } \\ \text { (ON lighting) } \end{array}$	LED (ON lighting)	Red/green LED (ON lighting)	LED	Red/green LED (ON lighting)	LED (ON lighting)	Without indicator light	LED (ON lighting)
Leakage current	1mA orless with 100 VaC 2mA or less with 200 VAC	1 mA or less		$10 \mu \mathrm{~A}$ or less		0 mA		

Note 1: The maximum load current 20 mA above is applied at $25^{\circ} \mathrm{C}$. The current will be lower than 20 mA if ambient temperature around switch is higher than $25^{\circ} \mathrm{C}$. (5 to 10 mA when $60^{\circ} \mathrm{C}$)
Note 2: Refer to Ending 1 for other switch specifications.

Cylinder weight

Unit: kg

Oscillating angle	90°	180°	270°	Switch weight (per switch)	Switch bracket		
Model no.					90°	180°	270°
RRC-8	0.39	0.43	0.49	0.018	0.005		
RRC-32	1.02	1.23	1.45		0.011	0.013	0.015
RRC-63	1.68	2.03	2.37		0.012	0.014	0.016

(E.g.) Product weight of RRC-8-90-T2H-D

Product weight: 0.39 kg
Switch weight: $0.018 \times 2 \mathrm{pcs} .=0.036 \mathrm{~kg}$
Switch bracket weight: $0.005 \times 2 \mathrm{pcs} .=0.010 \mathrm{~kg}$
Product weight: $0.39 \mathrm{~kg}+0.036 \mathrm{~kg}+0.010 \mathrm{~kg}=0.436 \mathrm{~kg}$

How to order

Without switch
RRC
With switch

How to order switch

- Switch body + mounting bracket (including rail)

- Mounting bracket (including rail)

Symbol	Descriptions			
A Size				
Model no.	Effective torque			
8	0.7 ($\mathrm{N} \cdot \mathrm{m}$)			
32	3.1 ($\mathrm{N} \cdot \mathrm{m}$)			
63	5.6 ($\mathrm{N} \cdot \mathrm{m}$)			
B Maximum oscillating angle				
90	90°			
180	180°			
270	270°			
© Switch model no.				
Axial lead wire	Radial lead wire	Contact	Indicator	Lead wire
TOH*	TOV*	Reed	1 color indicator type	2-wire
T5H*	T5V*		w/o light	
T8H*	T8V*		1 color indicator type	
T1H*	T1V*	Proximity	1 color indicator type	2-wire
T2H*	T2V*			
T3H*	T3V*			3-wire
T2YH*	T2YV*		2 color indicator type	2-wire
T3YH*	T3YV*			3-wire
T3PH*	T3PV*		1 color indicator type custom order	3-wire
*Lead wire length				
Blank	1 m (standard)			
3	3m (option)			
5	5m (option)			
(0) Switch quantity				
R	Clockwise rotation detection			
L	Counterclockwise rotation detection			
D	Two			
E Option				
A	Adjustable angle			
P6	Copper and PTFE free			

RRC

GRC
RV3*

RRC

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Cap (2)	Aluminum alloy		16	Bearing	--	
2	Cap gasket	Nitrile rubber		17	Cover	Aluminum alloy	
3	Body	Aluminum alloy		18	Shaft	Steel	
4	Piston	Stainless steel		19	Key	Steel	
5	Magnet	Plastic	20	Cushion rubber	Urethane rubber	Only RRC-8	
6	Piston packing seal	Nitrile rubber		21	DU bush	--	Only RRC-8
7	Wear ring	Acetar resin		22	Switch	--	
8	Cushion packing seal	Nitrile rubber	RRC-8 is excluded.	23	Stop plate	Stainless steel	
9	Needle	Copper alloy	RRC-8 is excluded.	24	Washer assembly cross headed pan	Steel	
10	Needle gasket	Nitrile rubber	RRC-8 is excluded.	25	Lock nut	Stainless steel	
11	Cap (1)	Aluminum alloy		26	Switch rail	Aluminum alloy	
12	U nut	Steel	27	Hexagon socket head set screw	Steel		
13	Hexagon socket head set screw	Alloy steel					
14	Cross headed flat head screw	Steel					
15	Hexagon socket bolt	Alloy steel					

Repair parts list

Model no.	Kit No.	Repair parts number
RRC-8	RRC-8K	(2) 68810
RRC-32	RRC-32K	
RRC-63	RRC-63K	

[^0]Dimensions

$\frac{\text { Dimens }}{\text { - RRC-8 }}$

RRC-8 with switch

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \text { BHA/ } \\ & \text { BHG } \end{aligned}$
LHA
LHAG
HKP
$\begin{aligned} & \text { HLA/ } \\ & \text { HLB } \\ & \hline \text { HLAG/ } \\ & \text { HLBG } \\ & \hline \end{aligned}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & { }^{*}-H C \\ & \hline \end{aligned}$
CKH2
CKLB2
$\begin{aligned} & \hline \text { NCK } \\ & \text { SCKFCK } \end{aligned}$
FJ
FK
Ending

Symbol		A		RD														
	Oscillating angle			T1*			T2*/T3*			T0*/T5*			T8*			$T 2 Y^{*} / T 3 Y^{*}$ Oscillating angle		
				Oscillating angle														
Model no.	90°	180°	270°															
RRC-8	94	109	124	30.8	35.5	40.2	32.2	37	41.6	30	34.3	41	24	28.3	35	30.8	35.5	40.2
	LD																	
Symbol	T1*			T2*/T3*			T0*/T5*			T8*			T2Y*/T3Y*					
	Oscillating angle			Oscillating angle			Oscillating angle			Oscillating angle			Oscillating angle					
Model no.	90°	180°	270°															
RRC-8	30.8	35.5	40.2	32.2	37	41.6	30	34.3	41	24	28.3	35	30.8	35.5	40.2			

[^1]

Note: Dimensions other than above are same as the type without switch.

Symbol	\&		AA	Allowable energy absorption J (For adjustable angle single 10°)	Hexagon head bolit dimension for adiustable angle (Common for R and L)
Model no.	MIN	MAX			
RRC-8	10.7	11.5	4	0.02	M5 $\times 0.5$
RRC-32	13.4	15.5	6	0.06	$\mathrm{M} 6 \times 0.75$
RRC-63	13.5	16.0	7	0.13	M6×0.75

Key dimensional drawing

Model Ino. Symbol	A	B	K	D	E
RRC-32	$16{ }_{0.5}^{0.0 .5}$	13	1.5	$3{ }^{0} 0.025$	0.2
RRC-63	20.0 .6	16	2	$4{ }_{0.0}^{0}$	0.2

3 port positions are provided as the figure above both on R side / L side.

L side R side

Selection guide of rotary actuator

Step1 Oscillating time check

Use oscillating time withing specified range of the below table.
Unit: S

Oscillating angle (${ }^{\circ}$)	90	180	270
Model no.	0.015 to 0.151	0.030 to 0.302	0.045 to 0.452
RRC-8	0.038 to 0.377	0.075 to 0.754	0.113 to 1.131
RRC-32	0.073 to 0.440	0.147 to 0.880	0.220 to 1.320
RRC-63			

* Oscillating time on table is time to achieve the end of oscillating after starting movement.

Step2 Size selection

If clamp, or simple static forces, etc., are necessary.

To move load

Resistance load

When force (resistance load) caused by fictional force, gravity or other external force is applied.
(1) Working pressure is determined. $\mathrm{P}(\mathrm{MPa})$
(2) A required force is determined.
(3) Length of an arm from a rotary
(m)

Inertia load

To rotate body.
(1) Oscillating angle oscillating time and working pressure are determined.

Oscillating angle $\quad \theta$ (rad)
Oscillating time $\quad t(s)$
Working pressure $\quad \mathrm{P}(\mathrm{MPa})$

$$
90^{\circ}=1.5708(\mathrm{rad})
$$

$$
180^{\circ}=3.1416(\mathrm{rad})
$$

$$
270^{\circ}=4.7124(\mathrm{rad})
$$

(2) Calculate load moment of inertia according to load shape and weight. Refer to moment of inertia table for the calculation formula. $\mathrm{l}\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
(3) Angular acceleration is calculated.

$$
\begin{aligned}
& \alpha=\frac{2 \theta}{\mathrm{t}^{2}}\left(\mathrm{rad} / \mathrm{s}^{2}\right) \\
& \theta: \text { Oscillating angle (rad) } \\
& \mathrm{t}: \text { Oscillating time (s) }
\end{aligned}
$$

Fr (N)

Calculation of resistance torque $T_{R}=\mathrm{K} \times \mathrm{FR}_{\mathrm{R}} \times \ell(\mathrm{N} \cdot \mathrm{m})$ $\mathrm{K}:$ If load fluck coefficient If load fluctuaten free $\mathrm{K}=2$ (When resistance torque caused by gravity functions) if load fluctuates, when $\mathrm{K}<5$, change of angular speed increases.	Determine size of rotary actuator according to output torque graph.

Calculation of acceleration torque
$T_{A}=5 \times I \times \alpha(N \cdot m)$
T_{A} is the required torque to accelete inertia load till set speed.

Determine size of rotary actuator according to graph.

Step3 Check of allowable energy

When using an inertial load, keep the load energy to lower than the rotary actuator's allowable energy.
(1) Calculate angular speed $\omega=\frac{2 \theta}{\mathrm{t}}(\mathrm{rad} / \mathrm{s})$

$$
\theta: \text { Oscillating angle (rad) } \quad \mathrm{t} \text { : Oscillating time (s) }
$$

(2) Calculation of load inertia energy

$$
\mathrm{E}=1 / 2 \mathrm{l} \omega^{2}(\mathrm{~J})
$$

I: Load moment of inertia $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
Check if load inertia energy E to be allowable energy of rotary actuator or less.
When exceeding allowable energy, external shock absorber, etc. is required.

Selection guide

[^0]: Note: Specify the kit no. when placing an order.

[^1]: Note: Dimensions other than above are same as the type without switch.

