Series variation

Rotary actuator **RRC** Series

RRC	l l l l l l l l l l l l l l l l l l l											RRC
GRC												GRC
RV3*							●: Sta	indard, 🔘: C	Option, O:	Custom order, : N	ot availabl	le ^{RV3*}
NHS					-			07	tion			NHS
HR								Option				HR
LN									Φ			LN
FH100									fre			FH100
HAP								ē				HAP
BHA/ Variation	Model no	Size	Effective torque	Maximum oscillating angle		Maximum os	cillating angle	ang		vitc	age	BSA2 BHA/
BHG		0120	(0.5MPa)	(°)		((°)	ole	anc	, ő	L G	BHG I HA
LHAG			(N·m)					stał	Der			LHAG
HKP	JIS Symbol							njp	ddo			HKP
HLA/								<	0			HLA/
HLAG/ HLAG/				90		180	270	A	P6			HLAG/
HEP	RRC											HEP
HCP		8	0.7									HCP
HMF				_								HMF
HMFB Rack and pinion		32	3.1			•	•	0	0	0	8	HMFB
HFP mechanism												HFP
HLC			5.0									HLC
HGP		63	5.6									HGP
FH500											·	FH500
HBL												HBL
HII												
BHE												BHE
CKG												CKG
CK Product intro	oduction											CK
СКА		~lo 070°		vina								СКА
CKS	■ Maximum oscillating an Torques: 0.7, 3.1, 5.6N·m	gie ∠/0 (applicable pressi	ure 0.5 MPa), ■ Space sa	d thin design permits installation								CKS
CKF	oscillation angle 90°, 180°	, 270°, are in the s	series. in a narrow	space.								CKF
CKJ	Appropriate model matchli	ig to applications	13 avallaut.									CKJ
CKL2												CKL2
CKL2 -*-HC												CKL2 -*-HC
CKH2												CKH2
CKLB2												CKLB2
NCK/ SCK/FCK												NCK/ SCK/FCK
FJ _			Stable	e torque and long service life								FJ
FK				n combined unique mechanism,								FK
Ending	╪╌ ╒ ╪╢┼╌╌╌╌╌╌╌╌╌╌╵╵╌╵	 •	stable	e torque even in low pressure,								Ending
				as linear cylinder, furthermore								be

RV3* NHS HR LN FH10 HAP BSA2 BHA/ BHG LHA LHAG HKP HLA/ HLB HLAG HLBG HEP HCP HMF HMF HFP HLC HGP FH50 HBL HDL HMD HJL BHE CKG СК CKA CKS CKF CKJ CKL2 CKL2 -*-HC CKH2 CKLB NCK/ SCK/FC FK Endin

RRC Series Series variation

	type
	drive
ator	rotation
totary actu	scillation,
Ľ	U

RRC

GRC RV3* NHS

HR LN Pneumatic components

Safety precautions

Always read this section before starting use. Refer to Ending 69 for cylinders and to Ending 78 for cylinder switches.

Rotary actuator rack & pinion RRC Series

Design & Selection

WARNNG

Do not brake or hold by sealing pneumatics into the product.

If no stopping device is provided outside the product and braking is applied by sealing air in with valves, the stop position may not be held because of air leakage, possibly resulting in injury or damage to operator, component, or device.

Do not apply torque exceeding rated output to the product.

If force exceeding rated output is applied, the product could be damaged.

If oscillation angle repeatability is required, directly stop external load.

The initial oscillation angle could change even with products provided with adjustable angles.

If axial load (thrust) on the shaft exceeds the tolerable value, operation faults could occur. If such a load is unavoidable, use a structure with thrust bearing as shown in Fig. 1.

Avoid applying bending (radial) load exceeding the allowable value onto the shaft end, or operation faults could occur.

If such a load is unavoidable, use a structure conveying only rotation as shown in Fig. 2.

When connecting the shaft end and load at any position in the oscillation range, use flexible coupling, etc., that will not twist off to prevent the shaft from breaking and bearings from wearing or seizure.

Fig.2 Radial load

- Install the external stopper away from the rotary shaft. If the stopper is installed near the rotary shaft, a torque generated by the product could be applied on the rotary shaft. This reaction on the stopper may cause damaging the rotary shaft or bearings, and possibly resulting in injury or damage to operator, equipment, or device.
- If the load weight is large and oscillation is fast, large inertia could be generated and allowable absorption exceeded, possibly damaging the rotary actuator. Install a shock absorber to absorb inertia.
- When installing a load or jig, etc., on the rotary actuator shaft, check that load is not applied as shown in Fig. 3.

Apply grease to rotating sections (pins, etc.) to prevent seizing.

Holding torque at the oscillation end is half the effective torque, so use with a load factor of 50% or less.

RRC GRC

RV3*

NHS

HR

LN

FH100

HAP

BSA2

BHA/ BHG

LHA

LHAG

HKP

HLA/

HLB

HLAG HLBG

HEP

HCP

HMF

HMFB

HFP

HLC HGP

FH500

HBL

HDI

HMD

HJL

BHE

CKG

CK

CKA CKS

CKF

CKJ

CKL2 <u>CKL2</u> CKH2 CKLB2 NCK/ SCK/FCK FJ FK Ending

Oscillation, rotation drive type

Rotary actuator

7

Installation & Adjustment

When adjusting the angle by supplying pressure, do not rotate the device more than necessary beforehand.

When adjusting while supplying pressure, the device could rotate and drop during adjustment, depending on how it is installed, possibly resulting in operator, component, or device injury or damage.

Do not loosen the angle adjustment hexagon bolt beyond the adjustment range.

If the bolt is loosened beyond the adjustment range, the angle adjustment hexagon bolt could be dislocated, possibly resulting in injury or damage to operator, component or device. The cylinder's oscillation angle will decrease when the angle adjustment hexagon bolt is rotated clockwise. Observe steps (1) to (5) when adjusting the angle. If the angle is not adjusted this way, the seal washer may break after one or two adjustments.

Angle adjustment procedures:

- (1) First loosen the hexagon nut as shown in Fig. 1.
- (2) Separate the seal washer from the cap (2) as shown in Fig. 2.
- (3) Turn the angle adjustment hexagon bolt, hexagon nut, and seal washer together as shown in Fig. 3, and adjust the angle. Check that the rubber section of the seal washer does not bite into the screw.
- (4) After adjusting the angle, move the seal washer near the cap (2) by hand as shown in Fig. 4.
- (5) Tighten as shown in Fig. 5 with the hexagon nut. Check that the rubber section of the seal washer does not bite into the screw section.
- Securely tighten the hexagon nut after adjusting the angle. The hexagon nut may loosen and cause external leakage in prolonged use.

Rotary actuator Rack & pinion type

RRC Series • Size: 8, 32, 63 Oscillating angle: 90°, 180°, 270° JIS symbol

Specifications

	Descriptions			RRC						
	Size		8	32	63					
-	Effective torque Note 1	N∙m	0.7	3.1	5.6					
-	Actuation		Rack & pinion type							
	Working fluid			Compressed air						
	Max. working pressur	e MPa	1.0							
	Min. working pressure Note	² MPa		0.1						
	Withstanding pressure	e MPa		1.6						
-	Ambient temperatu	re °C		-10 to 60 (no freezing)						
_	Port size		Rc1/8							
	Oscillating angle tolerance	Degree		$90^{+8}_{+1},180^{+8}_{+1},270^{+8}_{+1}$						
	Cushion		Rubber cushion	Air cu	Ishion					
	Effective cushion leng	th mm	-	4.8	5.8					
,	Allowable energy absorpt	tion J	0.05	0.21	0.41					
2		90°	3	12	22					
	Volumetric capacity cm ³	180°	6	24	44					
		270°	9	36	66					
	Lubrication		Not required (wh	en lubricating, use turbi	ne oil ISOVG32.)					

Note 1: An effective torque value is a product at working pressure 0.5MPa.

Note 2: When using RRC-8 with maximum oscillating angle, working pressure to be 0.3MPa and over.

Note 3: Adjustable angle is available as an option. Refer to page 13.

Maximum load Load which applies to shaft to be following number or less.

			Unit: N	
Model no.	RRC-8	RRC-32	RRC-63	
Thrust load F1	9.8	39.2	58.8	
Radial load F2	19.6	78.4	117.6	

Switch specifications

• 1 color/2 color indicator

CKI													
UNJ	Descriptions	Pr	oximity 2 w	ire	Proximit	y 3 wire			Re	eed 2 w	/ire		
CKL2	Descriptions	T1H/T1V	T2H/T2V	T2YH/T2YV	T3H/T3V	T3YH/T3YV	TOH/TO	/	T5H/	T5V		[8H/T8	/
CKL2	Applications	Programmable controller,	Prograr	Programmable		le controller,	Programmable cont	roller,	Programmable c	ontroller, relay,			
HC	Applications	relay, small solenoid valve	cont	roller	rel	ay	relay serial connection		indicator light),	Programmable controller, relay			
CKH2	Output method	-	-		NPN (output				-			
CKLB2	Power voltage	-	-		10 to 28 VDC								
NCK/	Load voltage	85 to 265 VAC	10 to 3	80 VDC	30 VDC	or less	12/24 VDC 110	VAC	5/12/24 VDC	110 VAC	12/24 VDC	110 VAC	220 VAC
SCK/FCK	Load current	5 to 100mA	5 to 20m/	A (Note 1)	100mA or less	50mA or less	5 to 50mA 7 to 2	20mA	50mA or less	20mA or less	5 to 50mA	7 to 20mA	7 to 10mA
FJ	Current consumption	-		-	10mA or less with 24 VDC				<u>-</u>				
FK	Internal voltage drop	7V or less	4V o	r less	0.5V c	or less	2.4V or les	ss OV		3	3V or less	S	
	Light	LED	LED	Red/green LED	LED	Red/green LED	LED		Without ind	iaatar liaht		LED	
Ending	Light	(ON lighting)	(ON lighting)	(ON lighting)	(ON lighting)	(ON lighting)	(ON lightin	g)	without ind	icator light	(C	N lightin	g)
	Leakage current	1mA or less with 100 VAC	1mA (or less	10 <i>u</i> A (orless	0m \						
	Leakage barrent	2mA or less with 200 VAC		THA OF less		TOUR OF TESS		VIIA					

↓ F1

F2

Note 1: The maximum load current 20mA above is applied at 25°C. The current will be lower than 20mA if ambient temperature around switch is higher than 25°C. (5 to 10mA when 60°C)

Note 2: Refer to Ending 1 for other switch specifications.

Cylinder weight

Cylinder	weight	Ī					Unit: kg	
Oscillating angle	۹۵°	90° 180°		Switch weight	Sv	vitch brack	ket	(E.g.) Product weight of RRC-8-90-T2H-D
Model no.	30	100	210	(per switch)	90°	180°	270°	Product weight: 0.39kg
RRC-8	0.39	0.43	0.49		0.005			Switch weight: $0.018 \times 2 \text{ pcs.} = 0.036 \text{ kg}$
RRC-32	1.02	1.23	1.45	0.018	0.011	0.013	0.015	Switch bracket weight: $0.005 \times 2 \text{ pcs.} = 0.010 \text{ kg}$
RRC-63	1.68	2.03	2.37		0.012	0.014	0.016	Product weight: 0.39 kg + 0.036 kg + 0.010 kg = 0.436 kg

RRC

How to order

9

RRC Series

With switch

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Cap (2)	Aluminum alloy		16	Bearing		
2	Cap gasket	Nitrile rubber		17	Cover	Aluminum alloy	
3	Body	Aluminum alloy		18	Shaft	Steel	
4	Piston	Stainless steel		19	Key	Steel	
5	Magnet	Plastic		20	Cushion rubber	Urethane rubber	Only RRC-8
6	Piston packing seal	Nitrile rubber		21	DU bush		Only RRC-8
7	Wear ring	Acetar resin		22	Switch		
8	Cushion packing seal	Nitrile rubber	RRC-8 is excluded.	23	Stop plate	Stainless steel	
9	Needle	Copper alloy	RRC-8 is excluded.	24	Washer assembly cross headed pan	Steel	
10	Needle gasket	Nitrile rubber	RRC-8 is excluded.	25	Lock nut	Stainless steel	
11	Cap (1)	Aluminum alloy		26	Switch rail	Aluminum alloy	
12	U nut	Steel	RRC-8 is excluded.	27	Hexagon socket head set screw	Steel	
13	Hexagon socket head set screw	Alloy steel					
14	Cross headed flat head screw	Steel					
15	Hexagon socket bolt	Alloy steel					

Repair parts list

Model no.	Kit No.	Repair parts number
RRC-8	RRC-8K	
RRC-32	RRC-32K	26780
RRC-63	RRC-63K	
Note: Specify the kit no whe	n placing an orde	ar

when placing an order.

Dimensions

Oscillating angle

90°

30

180°

34.3

270

41

Oscillating angle

90

24

180°

28.3

270°

35

90°

30.8

Oscillating angle

180°

35.5

270

40.2

Note: Dimensions other than above are same as the type without switch.

270

40.2

90°

32.2

Oscillating angle

180°

37

270

41.6

Oscillating angle

180°

35.5

90

30.8

Model no.

RRC-8

Note: Dimensions other than above are same as the type without switch.

RRC series

Dimensions: Option

Adjustable angle

3 port positions are provided as the figure above both on R side / L side.

Symbol	ļ	2		Allowable energy absorption J	Hexagon head bolt dimension for adjustable angle	
Model no.	MIN	MAX	AA	(For adjustable angle single 10°)	(Common for R and L)	
RRC-8	10.7	11.5	4	0.02	M5×0.5	
RRC-32	13.4	15.5	6	0.06	M6×0.75	
RRC-63	13.5	16.0	7	0.13	M6×0.75	

Key dimensional drawing

Model no. Symbol	A	В	K	D	Е
RRC-32	16 ^{-0.4}	13	1.5	3 ⁰ -0.025	0.2
RRC-63	20 -0.5	16	2	4 ⁰ -0.030	0.2

* The key is attached when shippig.

13

		,					
	Step1	Oscilla	<u>ting time che</u>	eck			
3*	Use oscilla	ting time withing	specified range of	the b	pelow table.		Unit: S
_	Oscillating	angle (°)	90		180		270
_	Model no.		0.015 to 0.151		0.020 to 0.202	0.0	210
	RRC	-32	0.015 to 0.151		0.075 to 0.754	0.0	145 to 0.452
)	RRC	-63	0.073 to 0.440		0.147 to 0.880	0.2	220 to 1.320
-	* Oscillating ti	me on table is time t	o achieve the end of osc	illating	after starting movement.		
	01 0	0'					
	Step2	Size se	ection				
	If clamp	o, or simple sta	atic forces, etc., a	are n	ecessary.		
	Statia]]	
		Dau			Coloulation of required torque		
-	(1) WORKING	d force is determine	$\frac{1}{2}$	-		-	
-	(3) Length o	f an arm from a rota	α. Γ(Ν) rv		$T = F \ell (N \cdot m)$		
_	actuator is	s determined.	μ (m)		(,		
						J	
_		he load					
5				1		1	
-	Resistance	ce load			Calculation of resistance		
_	When for	ce (resistance load)	caused by fictional		torque		
_	force, gra	vity or other externa	force is applied.		$T_R = K \times F_R \times \ell$ (N·m)		
-	(1) Work	ing pressure is de	termined. P (MPa)		K: slack coefficient		
_	(2) A req	uired force is dete	rmined. FR (N)		If load fluctuation free $K = 2$		
_	(3) Lengi	tor is determined	a rotary ℓ		If load fluctuates K = 5		
-			(11)		(when resistance torque caused by		Determine size
_	Inertia lo	bad			if load fluctuates, when $K < 5$.		or rotary actuator
_	To rotate b	odv			change of angular speed increases.		output torque
_	(1) Oscillating a	ngle /oscillating time and wo	rking pressure are determined.				graph.
_	Oscilla	ting angle θ (rad)		↓	1	
_	Oscilla	ting time t (s)	1				
_	Workin	ig pressure P (N	/IPa)				
_		90° = 1.5708 (r	ad)		Required torque $T = TR + TA$	-	
_		180° = 3.1416 (r	ad)				
_		270° = 4.7124 (r	ad)			J	
_	(2) Calcula	te load moment of	Inertia according to		<u> </u>	-	
-		ape and weight. F	ation formula				
2		$I (ka/m^2)$			Calculation of acceleration torque		
:	(3) Angular	acceleration is ca	lculated.		$TA = 5 \times I \times \alpha (N \cdot m)$		
		$\alpha = \frac{2\theta}{4^2}$ (rad/s ²)			TA is the required torque to		
		θ : Oscillating an	gle (rad)		accelete inertia load till set		
g		t : Oscillating tin	าe (s)		speed.		

When using an inertial load, keep the load energy to lower than the rotary actuator's allowable energy. (1) Calculate angular speed $\omega = \frac{2\theta}{t}$ (rad/s) θ : Oscillating angle (rad) t: Oscillating time (s) (2) Calculation of load inertia energy $E=1/2l\omega^2(J)$ I: Load moment of inertia (kg/m²) Check if load inertia energy E to be allowable energy of rotary actuator or less. When exceeding allowable energy, external shock absorber, etc. is required.

CKD

14

Selection guide

2. Figure for moment of inertia calculation													
he		Deguinemente		Radius of	Demerika	GRC							
200	Sketch	Requirements	Moment of Inertia Tkg/m ²	gyration K12	Remarks	RV3*							
Ð	\square					NHS							
plat		●Diameter d (r	Md^2	d^2	No installation direction	HR							
lal	n n	●Weight M (k	$I = \frac{1}{8}$	8	 when using with sliding, please consult with CKD 	LN							
ב						FH100							
2	<u>~</u>					HAP							
II SI		●Diameter d₁ (r	n)		●Ignore, when d₂	BSA2 BHA/							
	d	d ₂ (n	$I = \frac{1}{2} (M_1 d_1^2 + M_2 d_2^2)$	$d_1^2 + d_2^2$	section is extremely	BHG							
plat			a) 8 ` ´	8	small comparing to d₁ section	LHA							
Ulal						LHAG							
 						HKP HLA/							
is an e	R				The installation	HLB HLAG/							
itation		●Bar length R(r	h) $I = \frac{MR^2}{R}$	\underline{R}^2	direction is horizontal	HLBG							
er of ro	Ŷ	●Weight M (k	a) 1 = 3	3	attitude, oscillating	HEP							
r (cent					time varies	HCP							
8	I					HMF							
	\mathbf{R}_{1}				The installation	HMFB							
00	R ₂	Bar length R1	$M_1 P_4^2 = M_0 P_0^2$	$\mathbf{P}_4^2 \pm \mathbf{P}_2^2$	direction is horizontal	HFP							
ulu		●Weight M	$I = \frac{M(1+\chi)}{3} + \frac{M(2+\chi)}{3}$	3	If vertical installation	HLC							
		M			time varies	HGP							
						FH500							
avity)	\frown					HBL							
ter of gr						HDL							
n is cen	R	●Bar length R(n	$I = \frac{MR^2}{12}$	$\frac{R^2}{10}$	No installation direction	HMD							
rotatio			12	12		HJL							
enter of						BHE							
sd) (c	I					CKG							
epipe		Plate length a1			The installation	CK							
rallel		■ Length of side b	$I = \frac{M_1}{12} (4a_1^2 + b^2) + \frac{M_2}{12} (4a_2^2 + b^2)$	$\frac{(4a_1^2 + b^2) + (4a_2^2 + b^2)}{12}$	 The installation direction is horizontal If vertical installation attitude oscillation 	CKA							
ar pa		● Weight M₁				CKS							
angul		M2			time varies	CKF							
(recta						CKJ							
eq	<u> </u>	Length of side				CKL2 CKL2							
elepip		● Length of side a (n b (n	1) h)		No installation direction	-*-HC							
oaralı		●Weight M (k	$I = \frac{M}{42} (a^2 + b^2)$	$\frac{a^2 + b^2}{4a}$	When using with								
jular			12	12	sliding, please	NCK/							
sctanç	a					SCK/FCK							
<u>ت</u>													
3	-> 5												
10a0		• Shape of concentrated loa	1	Calculate k1 ²	The installation	Ending							
ated		Length to center of gravity o concentrated load	$M_2 R_2^2$	according to	direction is horizontal ■ When M ₂ is extremely	ype							
entra	ouc en	●Arm length R₂ (r	$I = M_1 (R_1 + K_1) + \frac{3}{3}$	shape of	small comparing to	ve t							
once	ŭ V	Concentrated load weight M1 (k		concentrated	M_1 , may be calculated as $M_2 = 0$	n dri							
3	Arm M ₂		ð/	load		atior							
w	to convert load J∟ to rotary actuator	shaft rotation when using v	rith gear]	Lato roté							
	D Load IL	Gear Rotary side (the tooth number)	Moment of inertia of load rotary shaft rotation		When shape of	actu ion,							
ar		Load side (the tooth number)			gear is increasing,	ary							
Geo Geo	Rotary	Load inertia	$ _{1.1} - (\underline{a})^2 _{1.1}$		gear moment of	Rot Osc							
		Moment	ин = (b) иг		considered.								
	"Salta	<u>N∙m</u>											