MN3E0
 Slim profile

PLUG-IN MANIFOLD W4G4 SERIES W4G4 seies

MN3EO
MN4EO
4GA/B
M4GAB
MNAGAB
4GA/B
(Master)
WGGAB2
W4GB4
MN3SO
MN4SO
4TB
4L2-4/
LMFO
4SA/BO
4SA/B1

4KA/B
4F
PV5G/
CMF

Series variation

Note 1: Effective sectional area S and sonic conductance C are converted as $\mathrm{S} \fallingdotseq 5.0 \times \mathrm{C}$.

W4G4 Series

Pneumatic components

Safety precautions

Always read this section before starting use.
Refer to Intro 63 for precautions of general valves.

5 port pilot operated valve W4G4 Series

MN3EO
MN4EO
4GA/B

Design \& Selection

1. Working environment

A CAUTION

IP65 (IEC60529 (IEC529: 1989-11)) standards are applied to the test. Avoid use in condition which water or coolant could directly contact the valve.
Explanation of protection property symbols and examination method of IP65

- Protective structure

Note: IP-65 is a standard as followings.
EC (International Electrotechnical Commission) standards (IEC60529 (IEC529: 1989-11))

2. Alternating current voltage specifications

CAUTION

■AC voltage specifications are built into all wave rectification circuits.
When using SSR to turn the solenoid valve ON and OFF, solenoid valve recovery could fail. Take care when selecting the SSR. (Consult with the relay or PLC manufacturer.)

3. Surge suppressor

CAUTION

- "The surge suppressor enclosed with the solenoid valve is to protect the output contact for that solenoid valve's drive. There is no significant protection for other devices in the area, and the surge may cause damage or malfunctions. Surge generated by other devices could be absorbed and cause damage such as burning. Care must be taken for points below."
The surge suppressor limits solenoid valve surge voltage, which can reach several hundred volts, to a lower voltage level withstandable by the output contact. Depending on the output circuit used, this may be insufficient and could result in damage or malfunction. Check whether the surge suppressor can be used by the surge voltage limit of the solenoid valve in use, the output device's withstand pressure and circuit structure, and by the degree of return delay time. If necessary, provide other surge measures. Solenoid valves with surge suppressors suppress the reverse voltage surge generated during OFF operation to the levels below.

Rated voltage	Reverse voltage value when OFF
12 VDC	27 V
24 VDC	47 V

When using the NPN output unit, a surge voltage equivalent to the voltage above plus the power voltage surge could be applied. Provide contact protection circuit.
(Output transistor protection circuit parallel setting example 1)

Programmable controller side
(Output transistor protection circuit parallel setting example 2)

4GA/B

Design \& Selection

Abstract

MN3EO MN4EO

If another device or solenoid valve is connected in parallel to the solenoid valve, reverse voltage surge generated when the solenoid valve is off is applied to these devices. Even when using the solenoid valve with a 24 VDC surge suppressor, the surge voltage could reach several tens of volts depending on the model. This revere polarity voltage could damage devices connected in parallel or cause them to malfunction. Avoid parallel connection of devices suspected of reversing polarity voltages, e.g., LED indicators. When driving several solenoid valves in parallel, the surge from other solenoid valves could enter the surge suppressor of one solenoid valve with a surge suppressor. Depending on the current value, that surge suppressor could burn. When driving several solenoid valves with surge suppressors in parallel, surge current could concentrate at the surge suppressor with the lowest limit voltage and cause similar burning. Even if the solenoid valve type is the same, the surge suppressor's limit voltage can be inconsistent, and in the worst case, could result in burning. Avoid driving several solenoid valves in parallel.

The surge suppressor incorporated in the solenoid valve often short-circuits if damaged by overvoltage or overcurrent from a source other than the solenoid valve. If the surge suppressor fails, if a large current flows when output is on, the output circuit or solenoid valve could be damaged or ignite. Do not keep power on in a faulty state. Provide an overcurrent protection circuit on the power or drive circuit or use a power supply with overcurrent protection so that a large current does not flow continuously.

4. Partition plug

When using partition plug, consult with CKD sales office.

Installation \& Adjustment

1. Common

A CAUTION

Port indication
Port positions such as 1P and 4A, etc., are indicated in accordance with ISO and JIS standards.

Applications	ISO standards	JIS standards
Supply port	1	P
Output port	4	A
Output port	2	B
Exhaust port	5	R1
Exhaust port	3	R2
Pilot air supplying port	$12 / 14$	PA
Pilot exhaust port	$82 / 84$	PR

Any valve mounting attitude is permissible. Check the port symbol to pipe as a reverse action such as cylinder, etc., is not created.

2. Port filter

A CAUTION

Port filter is used to prevent foreign materials from entering, and problems in a valve. This is not for improving quality of compressed air, so read the warning and the cautions in the Introduction very well, then implement installation and adjustment.
Do not remove or force the port filter.
The filter could deform and result in problems. If contaminants and foreign materials are found on the filter surface, flash lightly, or remove them by tweezers, etc.

Example of integrating A / B port filter

For cartridge joint

During Use \& Maintenance

1. Valve replacement

CAUTION

Check that the gasket does not fall off when replacing and installing the valve.

Mounting bolt	Thread size	Hexagonal wrench size	Proper tightening torque (N.m)
Hexagon socket head bolt	M4	Nominal 3	2.4 to 2.6

2. Pilot air OFF function (M7)

A CAUTION

■ The supply of pilot air is forcibly stopped when power is on, so the main valve can be switched even when power is on.
When using the OFF function, caution is required because the cylinder moves immediately when using the 2-position single and 3 -position $\mathrm{A} / \mathrm{B} / \mathrm{R}$ connection or $\mathrm{P} / \mathrm{A} / \mathrm{B}$ connection.

Output port destination list

How to operate M7 switch
(1) When using OFF function

Slide the M7 switch in the direction of the arrow until it stops.
This is a lock switch, so the OFF function is not reset even if the switch is released.

(2) During normal use

Return the M7 switch to the original position.

WARNING

When conducting manual operations, make sure that there are no people near the moving cylinder.

3. How to replace cartridge joint

CAUTION

Check procedures before changing the push-in joint size. Problems such as air leakage could occur if the joint is not installed properly or if mounting threads are not tightened sufficiently.

(1) Remove the set screw.
(2) Pull out the joint stopper plate and joint together.
(3) Align the stopper plate with the groove on the replacement joint, and assemble temporarily.
(4) Assemble the stopper plate and joint together, and tighten the set screw. Pull on the joint to confirm that it is properly installed. (Tightening torque: 0.55 to $0.65 \mathrm{~N} \cdot \mathrm{~m}$)

Cartridge type push-in joint model no.

Model	Part name	Model no.
W4G4	$ø 8$ straight	4G4-JOINT-C8
	$ø 10$ straight	4G4-JOINT-C10
	$\varnothing 12$ straight	4G4-JOINT-C12

MN3EO
MN4EO
Common specifications

Descriptions	W4GB4/W4GZ4
Type of valve / operation method	Pilot operated soft spool valve
Working fluid	Compressed air
Max. working pressure MPa	1.0
Min. working pressure MPa	0.2
Withstanding pressure MPa	1.50
Ambient temperature ${ }^{\circ} \mathrm{C}$	-5 to 55 (no freezing)
Fluid temperature ${ }^{\circ} \mathrm{C}$	5 to 55
Manual override	Non-locking type (standard)
Lubrication Note 1	Not required
Protective structure Note 2	Dust proof / jet-proof (IP65 or equivalent)
Vibration / impact m/s ${ }^{2}$	49 or less / 294 or less
Working environment	Containing corrosive gas is impermissible.
Note 1:Use the turbine oil Class 1 ISO VG32 if lubricated. Excessive lubrication results in instable operation. Note 2:IP65 (IEC60529 (IEC529: 1989-11)) standards are applied to the test. Refer to page 529 for details. Note 3:The working pressure range is 0 to 1.0 MPa when the external pilot (option symbol: K) is selected.Set the external pilot pressure between 0.2 to 1.0 MPa .	

JIS symbol

- 5 port valve

2-position single solenoid

3-position all ports closed

3-position $A / B / R$ connection ${ }_{(A)}^{4}{ }^{2}(B)$

3-position P/A/B connection
 $\begin{array}{ccc}5 & 1 & 3 \\ \left(R_{1}\right) & (P) & \left(R_{2}\right)\end{array}$

Ending

Individual specifications

Descriptions		W4GB4		W4GZ4
Port size	P/A/B port	Rc1/4, Rc3/8, G1/4, G3/8, NPT1/4, NPT3/8		
	R port	Rc1/4, Rc3/8, G1/4, G3/8, NPT1/4, NPT3/8		Rc1/4, G1/4, NPT1/4
	PA/PR port	Rc1/8, G1/8, NPT1/8		Rc1/8, G1/8, NPT1/8
Descriptions			W4GB4/W4GZ4	
			When O	When OFF
Response time	2-position	Single solenoid	30	38
		Double solenoid	30	-
	3-position	A/B/R connection	50	58

Response time is the value at supply pressure $0.5 \mathrm{MPa}, 20^{\circ} \mathrm{C}$ and oilless. The value will change based on quality of pressure and oil.

Descriptions			Gland	I/O connector
Weight	2-position	Single solenoid	701	755
		Double solenoid	745	799
	3-position	All ports closed	777	831

Flow characteristics

Model no.	Solenoid position		$\mathrm{P} \rightarrow \mathrm{A} / \mathrm{B}$		A/B \rightarrow R	
			C ($\mathrm{dm}^{3} /$ (s.bar))	b	C ($\mathrm{dm}^{3} /($ s.bar))	b
W4GB4	2-positio		7.7	0.31	7.3	0.16
	3-position	All ports closed	6.6	0.19	6.4	0.21
		A/B/R connection	6.5	0.15	7.3	0.04
		P/A/B connection	7.4	0.21	7.1	0.16

Note 1: Effective sectional area S and sonic conductance C are converted as $S \doteqdot 5.0 \times \mathrm{C}$.
Note 2: Flow characteristics are values for port size Rc3/8.

Coolant proof specifications

Can be selected with "E" option "A" in How to Order on Page 533.

Discrete valve: Sub-base side porting and back porting

W4GB4/W4GZ4 series

Discrete valve: Sub-base side porting and back porting

Discrete valve: Sub-base side porting and back porting

W4GB4/W4GZ4 series

Discrete valve: Sub-base side porting and back porting
MN3EO MNAEO

Dimensions
4GA/B

W4GB ${ }_{5}^{3} 0$ Side porting
\bigcirc Gland (blank)

M4GA/B

MNAGAB 4GA/B (Master) W4GAB2

W4GB4

MN3SO MN4SO

Ending
$\underset{\bullet \text { Gland (blank) }}{\frac{3}{3} 0}$ Back porting

Discrete valve: Sub-base side porting and back porting
Dimensions

- With pilot air OFF function (M7)

MN3EO
MN4EO
4GA/B
M4GAB
mNMGAB
4GA/B
(Master)
W4GAB2
W4GB4
MN3SO
MN4SO
4TB
4L2-4/
LMFO
4SABO
4SA/B1
4KA/B
4F
PV5G/
CMF
PV5/
CMF
3MA/BO
3PA/B
P/M/B
NPNAP/
NVP
4F*0E
HMV
HSV
2QV
3QV
SKH
PCD/
FS/FD
Ending
Plug-in manifold
5 port pilot operated valve

Individual wiring manifold
Sub-base side porting and back porting

MW4Gㄹㄹㄹ 4-R1 Series

Applicable cylinder bore size: ø63 to ø125
C Refer to Intro 17 for details

RoHS

Common specifications

Note 1: Use the turbine oil Class 1 ISO VG32 if lubricated.
Excessive lubrication results in instable operation. Refer to page 529 for details. 0.2 to 1.0 MPa .

Descriptions	MW4GB4	MW4GZ4
Manifold type	Block manifold	
Air supply and exhaust method	Common supply and common exhaust	
Pilot exhaust method	Main valve and pilot valve individual exhaust	
Piping direction	Sub-base side porting	Sub-base bottom porting
Type of valve / operation method	Pilot operated soft spool valve	
Working fluid	Compressed air	
Max. working pressure MPa	1.0	
Min. working pressure MPa	0.2	
Withstanding pressure MPa	1.5	
Ambient temperature ${ }^{\circ} \mathrm{C}$	-5 to 55 (no freezing)	
Fluid temperature $\quad{ }^{\circ} \mathrm{C}$	5 to 55	
Manual override	Non-locking	
Lubrication	Note 1	Not required
Protective structure Note 2	Dust proof / jet-proof (IP65 or equivalent)	
Vibration / impact m/s ${ }^{2}$	49 or less / 294 or less	
Working environment	Containing corrosive gas is impermissible.	

Note 2: IP65 (IEC60529 (IEC529: 1989-11)) standards are applied to the test.
Note 3: The working pressure range is 0 to 1.0 MPa when the external pilot (option symbol: K) is selected.Set the external pilot pressure between

JIS symbol
5 port valve
2-position single solenoid

2-position double solenoid

$\begin{array}{llll}5 & 1 & 3 \\ (R)\end{array}$
$\left(R_{1}\right)(P)\left(R_{2}\right)$
3-position all ports closed

3-position $A / B / R$ connection

$\begin{array}{lll}5 & 1 & 3 \\ \left(R_{1}\right) & (\mathrm{P}) & \left(\mathrm{R}_{2}\right)\end{array}$
3-position P/A/B connection

$\begin{array}{lll}5 & 1 & 3 \\ \left(R_{1}\right) & (P) & \left(R_{2}\right)\end{array}$

Individual specifications

Descriptions			B4	MW4GZ4
Maximum station number		16		
Port size	P port	Rc1/2, G1/2, NPT1/2		
	A/B port	Rc1/4, Rc3/8, G1/4, G3/8, NPT1/4, NPT3/8, Push-in joint ø8, ø10, ø12		Rc1/4, G1/4, NPT1/4
	R port	Rc1/2, G1/2, NPT1/2		
	PA/PR port	Rc1/8, G1/8, NPT1/8		
Descriptions			MW4GB4/MW4GZ4	
			When O	When OFF
Response time ms	2-position	Single solenoid	30	38
		Double solenoid	30	-
	3-position	A/B/R connection	50	58

Response time is the value at supply pressure $0.5 \mathrm{MPa}, 20^{\circ} \mathrm{C}$ and oilless. The value will change based on quality of pressure and oil.
Flow characteristics

Model no.	Solenoid position		$\mathrm{P} \rightarrow \mathrm{A} / \mathrm{B}$		$\mathrm{A} / \mathrm{B} \rightarrow \mathrm{R}$	
	$\mathrm{C}\left(\mathrm{dm}^{3} /(\mathrm{s} \cdot \mathrm{bar})\right)$		b	$\mathrm{C}\left(\mathrm{dm}^{3} /(\mathrm{s} \cdot \mathrm{bar})\right)$	b	
W4GB4	2-position	7.4	0.24	7.9	0.30	
	3	All ports closed	6.4	0.22	7.1	0.32
		A/B/R connection	6.4	0.17	8.3	0.28
		P/A/B connection	7.1	0.16	7.4	0.28

Note 1: Effective sectional area S and sonic conductance C are converted as $S \doteqdot 5.0 \times \mathrm{C}$.
Note 2: Flow characteristics are values for port size Rc3/8.

Coolant proof specifications

Can be selected with "E" option "A" in How to Order on page 539.

Individual wiring manifold: Sub-base side porting and back porting
How to order Individual wiring I/O connector

- Manifold model no.
MW4GB4
($0-10-$ R1 $M-6-3$
MW4GZ4
($0=08=$ R1
M $-6=3$
- Discrete valve block with solenoid valve

| NW4GB4 1 | $0-10-$ R1 M7 | (3) |
| :--- | :--- | :--- | :--- |
| NW4GZ4 (1) $0-$ 08N - R1 M7 | (4) | |

- Discrete solenoid valve

| Symbol | Descriptions | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B Solenoid position | | | | | | |
| $\mathbf{1}$ | 2-position single solenoid | \bullet | \bullet | \bullet | \bullet | \bullet |
| $\mathbf{2}$ | 2-position double solenoid | \bullet | \bullet | \bullet | \bullet | \bullet |
| $\mathbf{3}$ | 3-position all ports closed | \bullet | \bullet | \bullet | \bullet | \bullet |
| $\mathbf{4}$ | 3-position A/B/R connection | \bullet | \bullet | \bullet | \bullet | \bullet |
| $\mathbf{5}$ | 3-position P/A/B connection | \bullet | \bullet | \bullet | \bullet | \bullet |
| $\mathbf{8}$ | Mix manifold | \bullet | \bullet | | | |

W4GB4

MN3SO
MN4SO
4TB
4L2-4/
LMFO
C Port size \{2 (B), 4 (A) port \}

ize			Port	\{2 (B)							
		08	Rc1/4	\bullet	\bullet	\bullet	\bullet				
		10	Rc3/8	-		\bullet					
		08G	G1/4	-	-	\bullet	-				
		10G	G3/8	\bullet		\bullet					
		08N	NPT1/4	\bullet	\bullet	\bullet	\bullet				
		10N	NPT3/8	\bullet		\bullet					
		C8	ø8 push-in	\bullet		\bullet					
		C10	$\varnothing 10$ push-in	\bullet		\bullet					
		C12	ø12 push-in	\bullet		\bullet					
		(D) Electric connection (light and surge suppressor provided as standard)									
(1) Electric connection				R1	$1 / \mathrm{O}$ connector (500 mm)	\bullet	\bullet	\bullet	\bullet		
		© Option			E Option						
					M	Non-locking (standard) Note 1	\bullet	\bullet	\bullet	\bullet	\bullet
					M7	Lock with piota air OFF Note 1, Note 2	\bullet	\bullet	\bullet	\bullet	\bullet
					Z1	Air supply spacer Note 3	\bullet	\bullet			
					Z3	Exhaust spacer Note 3	\bullet	\bullet			
					K	External pilot	\bullet	\bullet	Note 4	Note 4	Note 4
					A	Coolant proof	\bullet	\bullet	\bullet	\bullet	\bullet
					F	A/B port filter Note 5	\bullet	\bullet	\bullet	\bullet	
					F Station number						
© Station number			$\begin{gathered} 1 \\ \text { to } \\ 16 \\ \hline \end{gathered}$		\bullet	\bullet					
© Volage			(G)Voltage								
			3	24 VDC	\bullet	\bullet	\bullet	\bullet	\bullet		
			4	12 VDC	\bullet	\bullet	\bullet	\bullet	\bullet		

Fill out "manifold specifications".
Note 1: Select either "M" or "M7".
Note 2: Both lock equipment with non-locking manual override and pilot air OFF function are provided.
Note 3: Instruct spacer installation position and quantity
with the manifold specifications.
Refer to page 559 for the details.
Note 4: This is common for internal and external pilot.
Note 5: A filter to prevent entry of foreign matter is incorporated in end block $1(\mathrm{P})$ port as standard.

MW4G ${ }^{B}$ 4-R1 ${ }_{\text {series }}$

Individual wiring manifold: Sub-base side porting and back porting
Manifold components explanation and parts list

Individual wiring manifold: Sub-base side porting and back porting

MN3EO MN4EO 4GA/B

M4GAB
MNAGAB
Common specifications

Descriptions	MW4GB4	MW4GZ4
Manifold type	Block manifold	
Air supply and exhaust method	Common supply and common exhaust	
Pilot exhaust method	Main valve and pilot valve individual exhaust	
Piping direction	Sub-base side porting	Sub-base bottom porting
Type of valve / operation method	Pilot operated soft spool valve	
Working fluid	Compressed air	
Max. working pressure MPa	1.0	
Min. working pressure MPa	0.2	
Withstanding pressure MPa	1.5	
Ambient temperature ${ }^{\circ} \mathrm{C}$	-5 to 55 (no freezing)	
Fluid temperature $\quad{ }^{\circ} \mathrm{C}$	5 to 55	
Manual override	Non-locking	
Lubrication	Note 1	Not required
Protective structure Note 2	Dust proof / jet-proof (IP65 or equivalent)	
Vibration / impact $\mathrm{m} / \mathrm{s}^{2}$	49 or less / 294 or less	
Working environment	Containing corrosive gas is impermissible.	

Electric specifications

Descriptions		MW4GB4/MW4GZ4
Rated voltage	DC	12, 24
Note 4	AC	$\begin{aligned} & 100(50 / 60 \mathrm{~Hz}) \\ & 110(50 / 60 \mathrm{~Hz}) \end{aligned}$
Rated voltage fluctuation range		$\pm 10 \%$
Holding current	12 VDC	0.100
	24 VDC	0.050
	100 VAC	0.024
	110 VAC	0.024
Power consumption W Note 5	12 VDC	1.2
	24 VDC	1.2
Apparent power VA	100 VAC	2.4
	110 VAC	2.6
Heat proof class		B (molded coil)

Note 4: Serial transmission connection is used only with 24 VDC . Note 5: Surge suppressor and indicator are provided as standard.

Note 1: Use the turbine oil Class 1 ISO VG32 if lubricated. Excessive lubrication results in instable operation.
Note 2: IP65 (IEC60529 (IEC529: 1989-11)) standards are applied to the test. Refer to page 529 for details.
Note 3: The working pressure range

JIS symbol

5 port valve
2-position single solenoid

2-position double solenoid

3-position all ports closed

$\begin{array}{ccc}5 & 1 & 3 \\ \left(R_{1}\right) & (P)\left(R_{2}\right)\end{array}$
3-position $A / B / R$ connection

| 5 | 1 | 3 |
| :--- | :--- | :--- | :--- |
| (R) | | |

3-position $\mathrm{P} / \mathrm{A} / \mathrm{B}$ connection $\begin{array}{ll}4 & 2 \\ \text { (A) } & \text { (B) }\end{array}$

Individual specifications

Descriptions		MW4GB4		MW4GZ4		
		T10 (R) Common gland	T6*1 (R)	$\overline{T 10(R)}$ Common gland	T6*1 (R)	
		Serial transmission	Serial transmission			
Maximum station number	Standard wiring		16			
	Double wiring	8				
Maximum solenoid number		16				
Port size	P port	Rc1/2, G1/2, NPT1/2				
	A/B port	Rc1/4, Rc3/8, G1/4, G3/8, NPT1/4, NPT3/8, Push-in joint ø8, ø10, ø12		Rc1/4, G1/4, NPT1/4		
	R port	Rc1/2, G1/2, NPT1/2				
	PA/PR port	Rc1/8, G1/8, NPT1/8				
Descriptions			MW4GB4/MW4GZ4			
			When ON	When OFF		
Response time ms	2-position	Single solenoid	30	38		
		Double solenoid	30	-		
	3-position	A/B/R connection	50	58		

Response time is the value at supply pressure $0.5 \mathrm{MPa}, 20^{\circ} \mathrm{C}$ and oilless. The value will change based on quality of pressure and oil.
Flow characteristics

Model no.	Solenoid position		$\mathrm{P} \rightarrow \mathrm{A} / \mathrm{B}$		$\mathrm{A} / \mathrm{B} \rightarrow \mathrm{R}$	
			$\mathrm{C}\left(\mathrm{dm}^{3} /(\mathrm{s} \cdot \mathrm{bar})\right)$	b	$\mathrm{C}\left(\mathrm{dm}^{3} /(\mathrm{s}\right.$-bar) $)$	b
W4GB4	2-position		7.4	0.24	7.9	0.30
	3-position	All ports closed	6.4	0.22	7.1	0.32
		A/B/R connection	6.4	0.17	8.3	0.28
		P/A/B connection	7.1	0.16	7.4	0.28

[^0]
MW4G ${ }_{z}^{B} 4-T 1 / 6$ series

Reduced wiring manifold: Sub-base side porting and back porting
Serial transmission slave unit specifications (refer to page 569 for the applicable PLC table.)

Descriptions		T6D1 (R) Note 1	T6G1 (R)	T6A1 (R)	T6J1 (R)	T6C1 (R)
Network name		DeviceNet	CC-Link ver1.10	UNIWIRE SYSTEM	UNIWIRE H SYSTEM	CompoBus/S
Power voltage	Unit side	24 VDC $\pm 10 \%$		24 VDC $+10 \%,-5 \%$ (power supply terminal common)		24 VDC $\pm 10 \%$
	Valve side	24 VDC +10\%, -5\%				24 VDC +10\%, -5\%
Current consumption		100 mA or less		200 mA or less	150 mA or less	60 mA or less
	Unit side	(Output when all points ON)		Output when all points ON	Output when all points ON	(Output when all points ON)
	Valve side	15 mA or less (when all points OFF)		(Curenericonsumpion ot ibody notinculved)	(Carenticonsumpion of body notinducey)	15 mA or less (when all points OFF)
Output no.		16 points				

Note 1: Consult with CKD for EDS file. (EDS file: Text file of parameters for communicating with each company's master.)

Coolant proof specifications

Can be selected with "G", "F" option "A" in How to Order on pages 544 and 545.

MW4G ${ }^{B} 4-T 1$ series

Reduced wiring manifold: Sub-base side porting and back porting
How to order
nifold model no.

4GA/B
M4GAB MNAGAB

4GA/B (Master)

MN3SO MN4SO
Manifold mod
MW4GZ4 8 0-08-T10R W M - 6-3
Discrete valve block with solenoid valve
NW4GB4 1 - 0 -10-1

Discrete solenoid valve
(A) Model no.
B Solenoid position

B						
$\mathbf{1}$	2-posienition single solenoid	\bullet	\bullet	\bullet	\bullet	\bullet
$\mathbf{2}$	2-position double solenoid	\bullet	\bullet	\bullet	\bullet	\bullet
$\mathbf{3}$	3-position all ports closed	\bullet	\bullet	\bullet	\bullet	\bullet
$\mathbf{4}$	3-position A/B/R connection	\bullet	\bullet	\bullet	\bullet	\bullet
$\mathbf{5}$	3-position P/A/B connection	\bullet	\bullet	\bullet	\bullet	\bullet
$\mathbf{8}$	Mix manifold	\bullet	\bullet			

C Port size $\{2$ (B), 4 (A) port $\}$	\bullet	\bullet	\bullet	\bullet		
$\mathbf{0 8}$	$\mathrm{Rc} 1 / 4$	\bullet		\bullet		
$\mathbf{1 0}$	$\mathrm{Rc} 3 / 8$	\bullet	\bullet	\bullet	\bullet	
$\mathbf{0 8 G}$	$\mathrm{G} 1 / 4$	\bullet		\bullet		
$\mathbf{1 0 G}$	$\mathrm{G} 3 / 8$	\bullet	\bullet	\bullet	\bullet	
$\mathbf{0 8 N}$	$\mathrm{NPT} 1 / 4$	\bullet		\bullet		
$\mathbf{1 0 N}$	$\mathrm{NPT} 3 / 8$	\bullet		\bullet		
$\mathbf{C 8}$	$\varnothing 8$ push-in	\bullet		\bullet		
C10	$\varnothing 10$ push-in	\bullet		\bullet		
$\mathbf{C 1 2}$	$\varnothing 12$ push-in					

D Electric connection					
Blank	Reduced wiring DC specifications		\bullet	\bullet	
1	Common gland AC spec. 1 10 6ith sta.		\bullet	\bullet	
2	Common gland AC spec. 7 to 12.th sta.		\bullet	\bullet	
3	Common gland AC spec. 13 to 10 6tit sta.		\bullet	\bullet	

E Wiring method (light and surge suppressor provided as standard)						
Blank	Discrete	Note 1			\bullet	\bullet
T10	Common gland	Left	\bullet	\bullet		
		Right	\bullet	\bullet		

© Terminal and connector pin array

F Terminal and connector pin array						
Blank	Standard wiring Note 2	\bullet	-	\bullet	\bullet	\bullet
W	Double wiring Note 2	\bullet	\bullet	\bullet	\bullet	
G Option						
M	Non-Iocking (standard) Note 3	\bullet	-	\bullet	\bullet	\bullet
M7	Lock withpilotair OFF Note 3 , Note 4	\bullet	\bullet	\bullet	\bullet	\bullet
Z1	Air supply spacer Note 5	\bullet	\bullet			
Z3	Exhaust spacer Note 5	\bullet	-			
K	External pilot	\bullet	-	Note 6	Note 6	
A	Coolant proof	\bullet	\bullet	\bullet	\bullet	\bullet
F	A/B port filter Note 7	\bullet	\bullet	-	\bullet	

Note 2: Standard wiring \cdots Wired based on the installed valve.
Double wiring … Double-solenoid wiring used regardless of installed valve.
Note 3: Select either "M" or "M7".
Note 4: Both lock devices with non-locking manual override and pilot air OFF function are provided.
Note 5: Instruct spacer installation position and quantity with the manifold specifications
Refer to page 559 for the details.
Note 6: This is common for internal and external pilot.
Note 7: A filter to prevent entry of foreign matter is incorporated in end block $1(P)$ port as standard.
Note 8: The maximum number of MF stations is 16 with standard wiring and 8 with double wiring.

Reduced wiring manifold: Sub-base side porting and back porting

How to order

- Manifold model no.
MW4GB4 $80-10=$ T6G1 W M $-6-3$
MW4GZ4 $80-08-$ T6D1R W M $-6=3$

		A Model no.				
		Manifold		Discreede value bock wiht solenod vave		Discriele solerid vare
						5
		M W 4 G B 4	M W 4 G Z	$\begin{array}{\|c\|} \hline \mathrm{N} \\ \mathrm{~W} \\ \mathbf{4} \\ \mathrm{G} \\ \mathrm{~B} \\ \mathbf{4} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{w} \\ & 4 \\ & \mathrm{G} \\ & \mathrm{z} \\ & 4 \end{aligned}$	$\begin{array}{\|c} \text { W } \\ 4 \\ \text { G } \\ \text { B } \\ 4 \end{array}$
B Solenoid position						
1	2-position single solenoid	\bullet	\bullet	-	\bullet	\bullet
2	2-position double solenoid	\bullet	\bullet	\bullet	\bullet	\bullet
3	3-position all ports closed	-	\bullet	-	\bullet	\bullet
4	3 -position A/B/R connection	\bullet	\bullet	\bullet	\bullet	\bullet
5	3-position P/A/B connection	\bullet	\bullet	\bullet	\bullet	\bullet
8	Mix manifold	\bullet	\bullet			

C Port size \{2 (B), 4 (A) port \}						
08	Rc1/4	\bullet	\bullet	\bullet	\bullet	
10	Rc3/8	\bullet		\bullet		
08G	G1/4	\bullet	\bullet	-	\bullet	
10G	G3/8	\bullet		\bullet		
08N	NPT1/4	\bullet	-	-	\bullet	
10N	NPT3/8	\bullet		\bullet		
C8	ø8 push-in	\bullet		\bullet		
C10	ø10 push-in	\bullet		\bullet		
C12	ø12 push-in	\bullet		\bullet		

(D) Wiring method (light and surge suppressor provided as standard)							
Blank	Discrete	Note 1			-	-	\bullet
T6G1	Serial transmission	Left	\bullet	\bullet			
T6G1R	CC-Link 16 points	Right	\bullet	\bullet			
T6J1	Serial transmission	Left	\bullet	\bullet			
T6J1R	UNIWIRE H 16 points	Right	\bullet	\bullet			
T6A1	Serial transmission	Left	\bullet	\bullet			
T6A1R	UNIWIRE 16 points	Right	\bullet	\bullet			
T6D1	Serial transmission	Left	\bullet	\bullet			
T6D1R	DeviceNet 16 points	Right	\bullet	\bullet			
T6C1	Serial transmission	Left	\bullet	\bullet			
T6C1R	CompoBus/S 16 points	Right	\bullet	\bullet			

Note on selection guide

Fill out "manifold specifications".
Note 1: W4GB4*9: Plug-in connector
NW4G*4*0: Electric wire for relay (AC)
Connector for relay (DC)
Note 2: Standard wiring \cdots Wired based on the installed valve.
Double wiring … Double-solenoid wiring used regardless of installed valve.
Note 3: Select either "M" or "M7".
Note 4: Both lock devices with non-locking manual override and pilot air OFF function are provided.
Note 5 : Instruct spacer installation position and quantity with the manifold specifications.
Refer to page 559 for the details.
Note 6: This is common for internal and external pilot.
Note 7: For slave unit (OPP2), standard specifications are different from coolant proof specifications.

Option	Slave unit cover material	Specifications
Standard	Polycarbonate	Spatter proof
A	Nylon	Coolant proof

Note 8: A filter to prevent entry of foreign matter is incorporated in end block $1(\mathrm{P})$ port as standard.
Note 9: The maximum number of MF stations is 16 with standard wiring and 8 with double wiring.
Note 10: 100/110 VAC and 12 VDC settings are not used for serial transmission connection specifications.

MW4G ${ }^{\text {B }} 4-$ T1/ $\mathbf{s e r i e s ~}^{\text {sen }}$

Reduced wiring manifold: Sub-base side porting and back porting Manifold components explanation and parts list

Reduced wiring manifold: Sub-base side porting and back porting

Repair parts and related parts list

No.	Parts name		Model no.
-	Cartridge type push-in joint and related parts	ø8 straight	4G4-JOINT-C8
		ø10 straight	4G4-JOINT-C10
		ø12 straight	4G4-JOINT-C12
		Blanking plug	For ø8: GWP8-B, for ø10: GWP10-B, for ø12: GWP12-B

(Reference value)
Body tightening torque $\quad: 4.0$ to $4.5 \mathrm{~N} \cdot \mathrm{~m}$
Cable clamp tightening torque: 3.0 to $3.5 \mathrm{~N} \cdot \mathrm{~m}$

MN3EO
MN4EO
4GA/B
M4GAB
MNAGAB
4GA/B
(Master)

- Cable clamp
Kit for wiring block T6*
- Cable clamp

Model no.	Applicable cable 0.D.	Descriptions
W4G-OA-W1608C1	$\varnothing 6$ to 8	This is used to protecta cable fom dust and jet.

W4GAB2
W4GB4
MN3SO
MN4SO
4TB
4L2-4/
LMFO
4SABO
4SA/B1
4KA/B
Applicable cable outer diameter : ø6 to ø8
(Reference value)
Body tightening torque $\quad: 2.0$ to $2.4 \mathrm{~N} \cdot \mathrm{~m}$
Cable clamp tightening torque $: 0.5$ to $0.7 \mathrm{~N} \cdot \mathrm{~m}$

MW4G2 $4-T 1 / 6_{\text {series }}$

Reduced wiring manifold: Sub-base side porting and back porting

MW4G ${ }_{z}^{B} 4-T 1 / 6$ Series
Reduced wiring manifold: Sub-base side porting and back porting

MW4G ${ }^{B} 4-T 1 / 6$ Series

Reduced wiring manifold: Sub-base side porting and back porting
MN3EO
MN4EO
4GA/B
Dimensions
MW4GB4 Side porting

- Serial transmission (T6*1) Left
 FS/FD
Ending
MW4GZ4 Back porting
- Serial transmission (T6*1) Left

Reduced wiring manifold: Sub-base side porting and back porting

NW4G

Block manifold: Block configurations

Simple, unrestricted assembly makes it easy to increase stations and conduct maintenance.
Valve block with solenoid valve
(1) Arrange required solenoid valves for required stations.

Note that the maximum number of stations is determined by wiring. (Refer to pages 538,542 .) (2) Solenoid valve numbers are counted as stations 1st, 2nd, or 3rd etc. from left side.
(1) End blocks are installed on both ends of the manifold.

Manifold base
(1) Orders for only the manifold base are also accepted, but the specifications may be limited.
(The manifold specifications are not needed when only the manifold base is ordered.)
ADiscrete valve block with solenoid valve

NW4G ${ }_{\text {Series }}$

Block manifold: Piping sectionMN3EO
A. Discrete valve block with solenoid valve * The tie rod (2 pcs.) is included.

This block is assembled with solenoid valve and valve block (separated resin base).

A. Discrete valve block with solenoid va
This block is assembled with solenoid valve and vale
Refer to pages $539,544,545$ for selection guide.

Piping section

B. Discrete valve block with masking plate

* The tie rod (2 pcs.) is included.

A Model no.		B Type		C Port size \{2 (B), 4 (A) port \}		(D) Electric connection		E Option	
NW4GB4	Sub-base side porting	MP	Individual wiring	08	Rc1/4	Blank	Reduced wiring DC specificaions	Blank	No option
NW46z4	Sub-base back porting	MPS	Rediced wing singe standard wing	10	Rc3/8 Note 1	R1	10 connector (500 mm for DC)	F	A/B port filter
		MPD	Reduced wing singledouble wing,	08G	G1/4	1	Commongand AC spec. 1106 his sta.		
			reduced wining double, 3-position	10G	G3/8 Note 1	2	Common gand AC spec. 71012 2th sta		
				08N	NPT1/4	3	Common ganad C spec. 1310 16ih sia		
				10N	NPT3/8 Note 1				
				C8	ø8 push-in Note 1				
				C10	ø10 push-in Note 1				
				C12	ø12 push-in Note 1				

Piping section

MN3EO
MN4EO
4GA/B
M4GAB
MNAGAB
4GA/B
(Master)
W4GAB2

Piping section
Probl
D. End block

The atmospheric release type has a built-in exhaust muffler.

A Type		B Port size $\{1(\mathrm{P}), 3(\mathrm{R} 2), 5(\mathrm{R} 1)$ port \}		C Option	
EL	Common exhaust Left	Blank	Rc1/2	Blank	No option
ER	Common exhaust Right	G	G1/2	K	External pilot \quad Note 1
EXL	Atmospheric release L with silencer box	N	NPT1/2	Note 1: "K" and "EXL" or "EXR" cannot	
be used together.					

> NW4G4-EL NW4G4-ER

NW4G4-EXL
NW4G4-EXR

NW4G ${ }_{\text {series }}$

Block manifold: Piping section
 MN4EO
4SAB1
4KA/B

Piping section

E. Manifold base

Orders for only the manifold base are also accepted, but the specifications may be limited.
(The manifold specifications are not needed when only the manifold base is ordered.)
Sub-base side porting: MW4GB4-10 \longrightarrow R1 \bigcirc (\quad - -3
Sub-base back porting :

E Terminal and connector pin array

A Model no.		B Port size \{2 (B), 4 (A) port \}			C Silencer box		(D) Wiring method		
NW4GB4	Sub-base side porting	08	Rc1/4		Blank	w/o silencer box	R1	Individual wiring I/O cable outlet	Note 4
NW4GZ4	Sub-base back porting	10	Rc3/8	Note 1	XU	Atmospheric release silencer boxR Note 2,3	T10	Common gland	Note 2
		08G	G1/4		XD	Atmospheric release silencer boxL Note 2,3	T10R	Common gland (right)	Note 2
		10G	G3/8	Note 1	Note 2: "XD" cannot be selected when the left wire connection is selected. "XU" can not be selected for right. Note 3: "K" and "XU" or "XD" cannot be used together.		T6G1	CC-Link 16 points	Note 2, 5
		08N	NPT1/4				T6G1R	CC-Link 16 points (right)	Note 2,5
		10N	NPT3/8	Note 1			T6J1	UNIWIRE H 16 points	Note 2, 5
		C8	ø8 push-in	Note 1			T6J1R	UNIWIRE H 16 points (right)	Note 2, 5
		C10	ø10 push-in	Note 1			T6A1	UNIWIRE 16 points	Note 2,5
		C12	ø12 push-in	Note 1			T6A1R	UNIWIRE 16 points (right)	Note 2,5
		Note 1: Sub-base back porting is not available.					T6D1	DeviceNet 16 points	Note 2, 5
					T6D1R	DeviceNet 16 points (right)	Note 2,5		
					T6C1	CompoBus/S 16 points	Note 2, 5		
					T6C1R	CompoBus/S 16 points (right)	Note 2, 5		

Note 4: Only DC voltage is used for R1.
Note 5: Only 24 VDC voltage is used for T6*.

E Terminal and connector pin array			F Option			G Station number		(H) Voltage	
W	Double wiring	Note 6	Blank	No option		1	1 station	1	100 VAC
Note 6: Double wiring specifications are used for the individual wiring (R1), so W does not need to be designated.			K	External pilot	Note 3	to	to	3	24 VDC
			A	Coolant proof	Note 7	8	8 stations	4	12 VDC
			F	A/B port filter	Note 8			5	110 VAC

Note 7: For $\mathrm{T} 6^{*}$, the slave station (OPP2) differs for standard specifications and coolant proof specifications.
Note 8: A filter to prevent entry of foreign matter is incorporated in end block 1 (P) port as standard.

MW4GB4 (sub-base side porting)

MW4GZ4 (sub-base back porting)

NW4G ${ }_{\text {Series }}$

Block manifold: Related products
MN3EO
MN4EO

Related products

- Cable clamp

(Reference value)
Cable clamp body tightening torque: 4.0 to $4.5 \mathrm{~N} \cdot \mathrm{~m}$ Tightening cap tightening torque : 3.0 to $3.5 \mathrm{~N} \cdot \mathrm{~m}$

W4G - $\frac{\text { SCL-18A }}{\substack{\text { I Type }}}$

Applicable cable outer diameter : $\varnothing 6$ to ø8 (Reference value)
Cable clamp body tightening torque: 2.0 to $2.4 \mathrm{~N} \cdot \mathrm{~m}$ Tightening cap tightening torque $: 0.5$ to $0.7 \mathrm{~N} \cdot \mathrm{~m}$

W4G-OA-W1608C1
 A Type

A Type	
Symbol	Thread size and applicable cable outer diameter
OA-W1608C1	$\mathrm{G} 1 / 2, \varnothing 6$ to 8

Tie rod

W4G4-MP

* 2 pcs. set

Model no.	D	L	$\mathrm{\ell}$	d
GWP8-B	$\varnothing 8$	33	14	10
GWP10-B	$\varnothing 10$	40	18.5	12
GWP12-B	$\varnothing 12$	43	20	14

When using partition plug, consult with CKD sales office.

NW4G ${ }_{2}^{B} 4$ Series

Internal structure and parts list
NW4GB410 Sub-base side porting

- 2-position single solenoid

NW4GZ410 Sub-base back porting * The solenoid valve is the same as NW4GB410.

2-position single solenoid

MAGAB
INAGAB
4GA/B (Master) W4GAB2

W4GB4
MN3SO MN4SO

Internal structure and parts list
Internal structure and parts list

MN3EO MN4EO

4GA/B
M4GAB
INAGAB
4GA/B
(Master)
W4GAB2
WAGB4
MN3SO
MN4SO
4TB
4L2-4/
LMFO
4SA/BO
4SA/B1
4KA/B
4F
PV5G/
CMF
PV5/
CMF
3MA/BO
3PA/B
P/M/B
NPNAP/
NVP
$4 \mathrm{~F}^{*} 0 \mathrm{E}$
HMV
HSV
2QV
3QV
SKH
PCD/
FS/FD
Ending

Main parts list

No.	Parts name	Material	No.	Parts name	Material
1	Cap D3	PA	9	Body	Aluminum
2	Piston assembly	-	10	Electric circuit board	-
3	Quick exhaust valve	H-NBR	11	Spool assembly	-
4	Pilot valve	-	12	Drip proof guard	PBT
5	Manual override	13	Cap S	PA	
6	Pilot valve assembly SD	-	14	Discrete sub-base	Aluminum
7	Cover	PBT	15	Gland cover	PBT
8	Electric connector	-			

NW4G ${ }_{2}^{B} 4$ series

MN3EO
Internal structure and parts list
NW4G ${ }^{\text {B }} 420 / W 4 G B 420$

2-position double solenoid
MAGAB

INAGAB
4GA/B (Master) W4GAB2

W4GB4
MN3SO MN4SO

- With pilot air OFF function (M7)
* Fig. shows 2-position double solenoid.

Main parts list

No.	Parts name	Material	No.	Parts name	Material
1	Cap D3	PA	9	Body	Aluminum
2	Piston assembly	-	10	Electric circuit board	-
3	Quick exhaust valve	H-NBR	11	Spool assembly	-
4	Pilot valve	-	12	Drip proof guard	PBT
5	Manual override	13	Cap S	PA	
6	Pilot valve assembly SD	-	14	M7 cap	PA
7	Cover	PBT	15	M7 switch	PA
8	Electric connector	-			

W4G4

Technical data (1) Pneumatics system selection guide

(1) The cylinder's average speed is based on the W4G4 Series and piping combination. It is expressed by the cylinder's piston speed obtained by dividing the stroke by the time the piston rod moved after starting, when the cylinder rod is installed facing upward. When the load rate is 50%, the average speed should be the approximate cylinder speed multiplied by 0.5 .
(2) The average cylinder speed indicated in the pneumatic device selection catalog is the value when one cylinder is operated discretely.
(3) The effective sectional area of the solenoid valve used for the calculation below is the 2-position value.
(4) This selection guide is just reference. With the CKD sizing program, confirm conditions to be actually used.

Standard system table

Valve	System No.	Flow control valve	Silencer	Piping	Composite efiective sececional area (mmi) Pipe length 1 m
W4GB410	C2	SC1-8	SLW-8A	$\varnothing 10 \times \varnothing 7.2$	9.7
	C 3	SC1-10	SLW-10A	$\varnothing 15 \times \varnothing 11.5$	15.6

Technical data (1) Pneumatics system selection guide

How to use guide

MN3EO
MN4EO
The device selection guide is used to select the optimum model.
Selection of components to be driven
Wheth \square
Select the cylinder's theoretical reference speed using the table below as a reference.

Degree of cylinder speed	Theoretical reference speed $(\mathrm{mm} / \mathrm{s})$
Low speed	250
Medium speed	500
High speed	750
Ultra high speed	1,000

Select the standard system No. appropriate fo \square

Explanation of technical terms

Theoretical
the same as the no-load value.When load is applied, speed drops considerably.)
$v o=1920 \times \frac{\mathrm{S}}{\mathrm{A}} 2445 \times \frac{\mathrm{S}}{\mathrm{D}^{2}} \longrightarrow$ (1)
v o: Theoretical reference speed (mm / s)
A: Cylinder cross-section areas (cm^{2})
S : Composite effective sectional area of circuit $\left(\mathrm{mm}^{2}\right)$
D : Cylinder bore size (cm)
Whe

$$
v o=\frac{l}{\mathrm{t} 3}(\mathrm{~A} / \mathrm{s})
$$

t 1 : Time until movement starts
t2 : Time of primary delay
t3 : Time during constant movement
$\ell:$ Stroke length
Note: t1, t2 varies depending on the load.
It can be neglected when there is no load

Required flow rate: Momentary flow rate passed when the cylinder operates at vo speed. This is expressed with the equation below.
In the table, this is the value when $P=0.5 \mathrm{MPa}$. The required flow rate is that required for selecting the clean air system.

$$
\begin{align*}
\mathrm{Q}= & \frac{\mathrm{A} v o(\mathrm{P}+0.101) \times 60}{0.101 \times 10^{4}}=\left\{\frac{\mathrm{A} v o(\mathrm{P}+1.03) \times 60}{1.03 \times 10^{4}}\right\} \tag{2}\\
& \mathrm{Q}: \text { Required flow (RX) (ANR) } \\
& \mathrm{P}: \text { Supply pressure (MPa) }
\end{align*}
$$

Required effective sectional area: Composite effective sectional area for the exhaust circuit required for moving the cylinder at vo speed. (Composite effective sectional area of valve, speed controller, silencer and piping.)

- Appropriate standard system: A combination of the optimum valve, speed controller, silencer, and pipe diameter required to operate the cylinder at vo speed. The combination in the table is for a piping length of 1 m .

How to calculate flow

Shown as followings depending on the practical unit
Chalk flow when $\frac{P_{2}+0.1}{P_{1}+0.1} \leqq b$
$Q=600 \times C\left(P_{1}+0.1\right) \sqrt{\frac{293}{273+t}}$

Subsonic flow when $\frac{P_{2}+0.1}{P_{1}+0.1}>b$
Q : Air flow rate $\left[\mathrm{dm}^{3} / \mathrm{min}(\mathrm{ANR})\right]$, SI unit dm^{3} (cubic decimeter) is expressed with ℓ (liter). $1 \mathrm{dm}^{3}=1 \ell$
C : The sonic conductance ($\mathrm{dm}^{3} /(\mathrm{s}$:bar))
b : Critical pressure percent (-)
P_{1} : Primary side pressure (MPa)
P_{2} : Secondary side pressure (MPa)
t : Temperature $\left({ }^{\circ} \mathrm{C}\right)$
$Q=600 \times C\left(P_{1}+0.1\right) \sqrt{1-\left[\frac{\frac{P_{2}+0.1}{P_{1}+0.1}-b}{1-b}\right]^{2}} \sqrt{\frac{293}{273+t}}$

Technical data (1) Pneumatics system selection guide
<Component selection guide-1>

MN3EO MN4EO	Cylinder bore size	Theoretical reference speed	Required flow	Required effective sectional area (mm^{2})	Proper standard system No.
	(mm)	(mm/s)	(\&/min.) (ANR)		Silencer assembly exhaust
4GA/B	$\varnothing 40$	250	112	1.6	A
M4GA/B		500	224	3.3	B
		750	336	4.9	B
MN4GA/B		1000	448	6.5	C1
	$ø 50$	250	175	2.6	A
$\begin{aligned} & \text { 4GA/B } \\ & \text { (Master) } \end{aligned}$		500	350	5.1	B
		750	526	7.7	C1
W4GA/B2		1000	701	10.2	C2
	$ø 63$	250	278	4.1	B
W4CB4		500	556	8.1	C2
$\begin{aligned} & \text { MN3SO } \\ & \text { MN4SO } \end{aligned}$		750	834	12.2	C2
		1000	1112	16.2	C3
4TB	$ø 80$	250	448	6.5	C1
		500	897	13.1	C2
$\begin{aligned} & \text { 4L2-4/ } \\ & \text { LMFO } \end{aligned}$		750	1345	19.6	C3
		1000	1794	26.2	C4
4SA/B0	$\varnothing 100$	250	701	10.2	C2
		500	1401	20.4	C3
4SA/B1		750	2102	30.7	C4
		1000	2803	40.9	D1
4KA/B	ø125	250	1095	16.0	C3
		500	1401	31.9	C4
4F		750	2102	47.9	D1
		1000	2803	63.9	D2

<Effective sectional area>

Effective sectional area mm^{2}
$\binom{$ When the effective sectional area value is $\times 10^{-1}$ or $\times 10^{n}}{$, multiply the flow rate value with the same value. }

* Refer to page 564 for system No.
<Clean air system components>
Clean air system components

Parts name	Model no.	Port size	Maximum flow rate (l/min. atmospheric pressure conversion
	C1000-6	Rc1/8	450
	C1000-8	Rc1/4	630
	C3000-8	Rc1/4	1280
	C3000-10	Rc3/8	1750
	C4000-8	Rc1/4	1430
	C4000-10	Rc3/8	2400
	C4000-15	Rc1/2	3000
	W1000-6	Rc1/8	830
	W1000-8	Rc1/4	1150
	W3000-8	Rc1/4	2150
	W3000-10	Rc3/8	2430
	W4000-8	Rc1/4	2500
	W4000-10	Rc3/8	4350
	W4000-15	Rc1/2	4750
$\begin{aligned} & \stackrel{\mathbb{I}}{\frac{1}{4}} \\ & \frac{\Phi}{4} \\ & \frac{1}{4} \end{aligned}$	F1000-6	Rc1/8	460
	F1000-8	Rc1/4	610
	F3000-8	Rc1/4	1230
	F3000-10	Rc3/8	1500
	F4000-8	Rc1/4	1320
	F4000-10	Rc3/8	2140
	F4000-15	Rc1/2	3000
	R1000-6	Rc1/8	770
	R1000-8	Rc1/4	1350
	R3000-8	Rc1/4	2000
	R3000-10	Rc3/8	2600
	R4000-8	Rc1/4	2500
	R4000-10	Rc3/8	4400
	R4000-15	Rc1/2	5000
	L1000-6	Rc1/8	550
	L1000-8	Rc1/4	700
	L3000-8	Rc1/4	1100
	L3000-10	Rc3/8	2250
	L4000-8	Rc1/4	1000
	L4000-10	Rc3/8	1700
	L4000-15	Rc1/2	2700

[^1] MPa , setting pressure $=0.5 \mathrm{MPa}$ and pressure drop $=0.1 \mathrm{MPa}$. For air filter, primary pressure= 0.7 MPa , pressure drop $=0.02 \mathrm{MPa}$, and for lubricator, primary pressure $=0.5 \mathrm{MPa}$ and pressure $=0.03 \mathrm{MPa}$

Technical data (2) Notes when wiring: Common gland type

Common gland type (wiring method T10)

Notes when wiring

MN3EO
MN4EO
4GA/B
M4GAB
MNAGAB
4GA/B
(Master)
W4GAB2

W4GB4
MN3SO
MN4SO
4TB
$4 L 2-4 /$

LMFO
4SABO
4SA/B1
4KA/B
4F
PV5G/
CMF
PV5/
CMF
3MABO
3PA/B
P/M/B
NPNAP/
NVP
4F*0E
HMV
HSV
2QV
3QV
SKH
PCD/
FS/FD
Ending
Plug-in manifold
5 port pilot operated valve

Terminal No.

| 豪 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 8 |

(Double wiring)
(MF station number; up to 16 stations)

Gland No. $\mathbf{C O M}$	18	17	16	15	14	13	12	11	10

(MF station number; up to 8 stations)

| Gland No. COM | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 10 | Valve No. | COM | (Void) | (Void) | 8b | 8 a | 7 bb | 7 a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{6 b}$ 6a

| Gland No. | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | COM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Valve No. | 5 a | 4 b | 4 a | 3 b | 3 a | 2 b | 2 a | 1 b | 1 a | COM |

(Up to 16 solenoids)

Gland No. Com	18	17	16	15	14	13	12	11	10

| Valve No. | COM | (Void) | (Void) | 8b | 8 a | 7 b | 7 a | (Void) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{6 a}$ 5b

Valve No.	5 a	4 b	4 a	(Void)	3a	(Void)	2 a	(Void)	1 a
COM									

Technical data (2) Notes when wiring: Serial transmission type

MN3EO MN4EO

Notes when wiring

[Notes for serial transmission type (T6*)]
(1) The slave station output number differs with the manufacturer, but connector pin numbers in the manifold and manifold solenoids correspond as shown below.
4GA/B (2) Internal connectors are wired in order, so depending on the number of manifold stations there may be open output numbers. These open outputs are used only for purposes other than driving the solenoid valve manifold being used.
(4) Use the slave station for each communication system.

Refer to technical data on page 569 for the specifications on the usable PLC models, host unit models and communication systems.
(5) Manifold station numbers are set in order from the left facing the piping port regardless of the wiring block position.

MN3SO (6) Contact the PLC manufacturer for information on the PLC.

Relations between connector pin No. and solenoid valve
For single solenoid valve
(Available up to 16 stations)
NPN
NVP

Pin No.	2	4	6	8	10	12	14	16		
Valve No.	2 a	4 a	6 a	8 a	10 a	12 a	14 a	16 a		
Pin No.	1	3	5	7	9	11	13	15		
Valve No.	1 a	3 a	5 a	7 a	9 a	11 a	13 a	15 a	For double solenoid valve \quad	(Available up to 8 stations)
:---										

Pin No.	2	4	6	8	10	12	14	16
Valve No.	1 b	2 b	3 b	4 b	5 b	6 b	7 b	8 b
Pin No.	1	3	5	7	9	11	13	15
Valve No.	1 a	2 a	3 a	4 a	5 a	6 a	7 a	8 a

- For mix (single and double mixture)
(Available up to 16 solenoids)

Pin No.	2	4	6	8	10	12	14	16
Valve No.	2 a	4 a	6 a	7 b	8 b	9 b	10 b	11 b
Pin No.	1	3	5	7	9	11	13	15
Valve No.	1 a	3 a	5 a	7 a	8 a	9 a	10 a	11 a

*1:The numbers in the valve No. 1a, 1b, 2a, $2 b$ and so forth indicate the first station and 2nd station. The alphabetic characters a and b indicate the a side solenoid and the b side solenoid.

T6*R (Right)

Relations between slave unit output number and connector pin No .
T6A1, T6D1, T6J1, T6G1, T6C1

Output number	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Connector pin No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Technical data (2) Notes when wiring: Serial transmission type
PLC table

Model no.	Maker name (recommended body)	Series	Communication system name	Host station model no.
T6A1	UNIWIRE	Compatible with each PLC, PC and SBC Consult with CKD for details.	UNIWIRE SYSTEM	Connect to SEND UNIT (UW-SD-120) or various UNIWAIRE interface
T6D1	OMRON	SYSMAC CS Series SYSMAC CJ Series SYSMAC CV Series SYSMAC a Series SYSMAC C2000HS Series Others	DeviceNet	CS1W-DRM21 CJ1W-DRM21 CVM1-DRM21-V1 C200HW-DRM21-V1 ITNC-EI**1-DRM (master integrated PLC) 3G8B3-DRM21 (VME board)
	TOYODA	$\begin{gathered} \text { PC3J/2J Series } \\ \text { PC3JD } \\ \text { PC2F/PC2FS } \end{gathered}$		THK-5398 TIC-5642 (master integrated PLC) TFU-5359
	ODVA	Each company's DeviceNet compatible PLC, PC and SBC		Connect to each maker's DeviceNet compatible master
T6G1	MITSUBISHI	MELSEC A Series MELSEC QnA Series MELSEC Q Series	CC-Link	AJ61BT11 AJ61QBT11 A1SJ61BT11 A1SJ61QBT11 QJ61BT11 (N)
	CC-Link institution (CLPA)	PLC, PC compatible with each CC-Link brand		Connect to each maker's CC-Link master
T6J1	UNIWIRE H SYSTEM	Compatible with each PLC, PC Consult with CKD for details.	UNIWIRE H SYSTEM	Connect to SEND UNIT (UW-SD-H2) or various H SYSTEM interface
T6C1	OMRON	CPM2C Series SYSMAC CJ Series SYSMAC C200HS SYSMAC a C200HX/HG/HE SYSMAC CS Series SYSMAC CQM1H/CQM1	CompoBus/S	CPM2C-S100C CPM2C-S110C CPM2C-S100C-DRT CPM2C-S110C-DRT CJ1W-SRM21 C200HW-SRM21-V1 CQM1-SRM21-V1

Note: Contact each PLC maker for information on the PLC and for series names or PLC names which are not listed.

$\begin{aligned} & \text { MN3EO } \\ & \text { MNEEO } \end{aligned}$
4GA/B
M4GAB
MNAGAB
4GA/B (Master)
W4GAB2
W4CB4
$\begin{aligned} & \text { MN3SO } \\ & \text { MN4SO } \end{aligned}$
4TB
$\begin{aligned} & \text { 4L2-4/ } \\ & \text { LMFO } \end{aligned}$
4SA/B0
4SA/B1
4KA/B
4F
PV5G/ CMF
$\begin{aligned} & \text { PV5/ } \\ & \text { CMF } \end{aligned}$
3MA/BO
3PA/B
P/M/B
$\begin{aligned} & \text { NPNAP/ } \\ & \text { NVP } \end{aligned}$
$4 F^{*} 0 \mathrm{E}$
$\begin{aligned} & \text { HMV } \\ & \text { HSV } \end{aligned}$
$\begin{aligned} & \text { 2QV } \\ & 3 Q V \end{aligned}$
SKH
$\begin{aligned} & \mathrm{PCD} / \\ & \mathrm{FS} / \mathrm{FD} \end{aligned}$
Ending

W4G4
 Series

Technical data (2) Notes when wiring: Wiring between blocks

Wiring between wiring block and valve block (DC specifications)

A part called a dedicated wiring connector is incorporated in the valve block and supply and exhaust port, etc. With this structure, the wiring is completed when the block manifold is disassembled or assembled. No special wiring is required during disassembly or assembly. There is a regularity between wiring block connector pin numbers and wired valves, so check wiring for each wiring block, and connect between the valve and control unit. Pay special attention when expanding or reducing the number of valve blocks. An example of the wiring circuit for expansion is shown below.

Wiring example of circuit

4GA/B
(Master) The figure below is an example for the MW4G4 wiring circuit, and differs from actual specifications.

Double wiring

If one valve block is added between the second and third stations, the outputs assigned to No. 5 and No. 6 on the wiring block's common gland are automatically shifted to common gland No. 7 and No. 8, two solenoid places away.

Standard wiring

The same as for double wiring, the common gland number is shifted and assigned. Shifting differs with the solenoid valve. When using one solenoid (2-position single), the common gland number shifts by one solenoid space. When using two solenoids (2-position double, 3-position), numbers are shifted by two solenoid spaces.

Technical data (3) How to expand reduced wiring manifold

Deal drawing of block manifold

Example of disassembling: For MW4GB4 common gland left wiring specifications

Valve block expansion

(1) Remove tie rod set screw.
(2) Remove the blocks to the position to be expanded.
(3) Mount the tie-rod for expansion.
(4) Install valve blocks to be added.
(5) Eliminate clearance between blocks, and couple with a hexagon socket head bolt. (Tightening torque: 7.0 to $8.0 \mathrm{~N} \cdot \mathrm{~m}$)

Replace of valve
How to remove
(1) Loosen the two set screws.
(2) Remove the valve from the valve block.

How to install
Install the valve following removal procedures in reverse.
Refer to the table below for the set screw's recommended tightening torque.

Recommended tightening torque of valve set screw

	size	Recommended tightening torque (N.m)
W4G4	M4	2.4 to 2.6

Technical data (3) How to expand reduced wiring manifold

*1: Wiring is required only when expanding AC specifications.
*2: Use the valve block with masking plate as a reserved block if specifications will be changed for AC specifications.

Connection procedure of T10 electric circuit board (double wiring)
When using double wiring specifications, double solenoid wiring is used regardless of the installed solenoid valve's switching position class. The same wiring is used only for standard wiring and double wiring double SOL.
2) For double SOL
(MF station number; up to 8 stations)

Connector No.	COM	18	17	16	15	14	13	12	11										
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		Valve No.	COM (Void) (Void)	8b	8 a	7 b	7 a	6 b	6 a	
:---	:---	:---	:---	:---	:---	:---	:---		Connector No.	9	8	7	6	5	4	3	2	1	COM
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Valve No. | 5a | 4b | 4a | 3b | 3a | 2b | 2a | 1 b | 1 a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3) For mix manifold
(Up to 16 solenoids)

Connector No.	COM	18	17	16	15	14	13	12	11									
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		Valve No. COM (Void) (Void) (Void) (Void)	7 b	7 a	(Void)	6 a	5 b		
:---	:---	:---	:---	:---	:---	:---		Connector No.	9	8	7	6	5	4	3	2	1	COM
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Valve No. | 5a | 4b | 4a | (Void) | 3a | (Void) | 2a | (Void) | 1a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MW4G4 series

Manifold specification sheet

How to fill out wiring specifications sheet

MN3EO
MN4EO

MW4GZ4 block manifold specifications

MN3EO
MN4EO
4GA/B
M4GAB

- Select the type from the "Block part configuration" (pages 552 to 559), or pages 539,544 , or 545 when completing this form.

- Wiring specifications (Not required for standard wiring and double wiring.)

Connector pin or gland No.		Valve No.															
T10	T6*	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1																
2	2																
3	3																
4	4																
5	5																
6	6																
7	7																
8	8																
9	9																
10	10																
11	11																
12	12																
13	13																
14	14																
15	15																
16	16																
COM																	
COM																	

MN3SO MN4SO

[^0]: Note 1: Effective sectional area S and sonic conductance C are converted as $\mathrm{S} \fallingdotseq 5.0 \times \mathrm{C}$
 Note 2: Flow characteristics are values for port size Rc3/8.

[^1]: Note) Max. flow rate: for FRL, FR and R, primary pressure= 0.7

