## SCHUNK



## SCHUNK takes the initiative. For you.

SCHUNK AUTOMATION anticipates trends in technology and customer needs and implements them in unique products, solutions and services.

Profit from the synergy of our triple expertise as a pioneer in automation, in modular assembly automation and in modular robotics.

With a complete range that includes gripper modules, turning and rotary units, linear modules, robot accessories, modular assembly automation and vision systems, we possess a compatible basis for delivering industry-specific solutions in every periphery.

Discover SCHUNK, the partner that can strengthen your market position in your industry. Today - with the technological capacity of tomorrow.

## Robot Accessories

| Product Overview | Page | 4 |
| :---: | :---: | :---: |
| Synergies with SCHUNK | Page | 6 |
| Partners with a System Approach | Page | 8 |
| SCHUNK sets Standards | Page | 10 |
| Tool Changing | Page | 13 |
| Feed-through | Page | 201 |
| Protecting | Page | 243 |
| Compensation | Page | 309 |
| Measuring | Page | 399 |
| Machining | Page | 439 |
| Accessories | Page | 461 |
| Your Contact Partners at SCHUNK |  |  |
| SCHUNK Service | Page | 493 |
| Subsidiaries/Distribution Partners | Page | 494 |
| Plants | Page | 496 |
| Fax Order/Catalog Order | Page | 497 |

## Product Overview

Robot Accessories

| Tool Changing |  |  |
| :---: | :---: | :---: |
| Miniature Change System |  |  |
| NT35 | MWS | Page 14 |
| Quick Change System |  |  |
|  | SWS-005-602 | Page 22 |
|  | Options for SWS | Page 108 |
|  | SWM-S / SWM-M | Page 150 |
| Gripper Change System |  |  |
|  | GWS 064-125 | Page 160 |
| Manual Gripper Change System |  |  |
|  | HWS-040-125 | Page 176 |
| Flat Manual Change System |  |  |
|  | FWS-050 | Page 192 |
| Feed-through |  |  |
| Feed-through for Robots |  |  |
|  | DDF-031-160 | Page 202 |
| Stationary Feed-through |  |  |
|  | DDF-SE-080-120 | Page 234 |
| Proteding |  |  |
| Collision and Overload Protection |  |  |
|  | OPS-080-200 | Page 244 |
|  | OPS+063-101 | Page 264 |
|  | OPR-061-221 | Page 280 |


| Compensation |  |  |
| :---: | :---: | :---: |
| Z Compensation Units |  |  |
| Cie | AGE-Z-050-080 | Page 310 |
| XY Compensation Units |  |  |
|  | AGE-XY-050-080 | Page 326 |
| F Compensation Units |  |  |
|  | AGE-F-050-080 | Page 342 |
| XYZ Compensation Units |  |  |
|  | AGE-S-100-200 | Page 362 |
| Insertion Units |  |  |
|  | FUS-001-400 | Page 382 |
| Measuring |  |  |
| Force Sensors |  |  |
|  | FTC-050 / FTCL-050 | Page 400 |
|  | FT-Nano 17-43 | Page 416 |
|  | FT-Mini 40-45 | Page 422 |
|  | FT-Gamma | Page 426 |
|  | FT-Delta | Page 428 |
|  | FT-Theta | Page 430 |
|  | FT-Omega 160-250 | Page 432 |
| Machining |  |  |
| Chanfering Spindle |  |  |
|  | FDB-150-660 | Page 440 |
| Accessories |  |  |
|  | IN / MMS / SST / WV-G / SWV / DSV | Page 462 |

## Synergies with SCHUNK

## SCHUNK SYNERGY:

Toolholding/Workholding and Automation

## Visions in two technology areas

Toolholding/workholding and automation are our core competences. The resuling synergy effects make us unique. SCHUNK understands this complex world of clamping and handling like no one else. As a long-standing components specialist we know the demands and requirements of both technology areas. Moreover there's the fascination of new possibilifies. With our twofold expertise we can provide you with trend-setting leading technology. From the spindle to robotics.

We call this "SCHUNK SYNERGY". Get to know us as your active "all-in-one" partiner - all the services from one source to benefit you.

## Synergies with SCHUNK

## More innovative for you!

## SCHUNK opens up new horizons

Shaping technology. Putting the dynamics into processes. Increasing added value. SCHUNK is one of the world's leading manufacturers for clamping and gripping technology, and our name is synonymous with innovation.

We are a family-run business based in Lauffen, Germany and a globally active company rolled into one. Continual dialog with our customers and the personal responsibility and individual endeavors of each andevery employee to perform the work faultlessly and in the best quality produce solutions, which precisely conform to our customers' needs and the demanding requirements of the market.

SCHUNK opens up new horizons. For even today, we are focusing on the opportunities of tomorrow, and boast a comprehensive range of future-oriented technologies. Our promise: High-quality solutions that not only live up to your expectations, but exceed them! And on this premise, we have consistently based our corporate philosophy: Quality, reliability and pioneering spirit.

Through continuous development, we are constantly opening up new prospects for our customers. Technical creativity, supreme expertise and soundly based experience are the success factors we offer you in engineering, production and service.

We are thinking ahead - for you!


## Partners with a System Approach

## System partners

## Solutions from one source

As one of the most innovative market leaders, we offer unique solutions with our gripping systems, rotary units, linear modules, robot accessories and customized applications. Our broad product range enables us to offer precisely the right solution, even for your specialized tasks. We are development partners for various industries and specialize in your handling applications.

Whenever handling tasks require maximum precision and economic efficiency, SCHUNK provides the momentum and the perfect solution for puting them into practice.

You, too, can benefit from our complete automation range from one source. From standardized and individual gripper modules to complex functional modules. Rediscover SCHUNK! Again and again.

## Partners with a System Approach

## Automation product range

## Gripping Modules

SCHUNK currently has the most comprehensive range of universal grippers and gripper modules for small components. Pneumatic or electric. Offering all features from state-of-the-art materials and coatings employed as standard to internal media feed-through. With our high level of technical expertise, SCHUNK sets the trend for cost-efficient handling in any industry, in any field.

## Rotary Modules

Technology and functionality in the most compact form. SCHUNK's range of rotary modules represents the entire spectrum of compact turning and rotary units, swivel heads and rotary fingers. In other words, it's the ideal solution for handling tasks.

## Linear Modules

Precision mini-slides, pneumatic linear modules, rigid gantry axes and axes with servo-electric linear drive - the SCHUNK product range offers linear technology for high-speed automated assembly. Compact and designed as a modular system.

## Robot Accessories

Robot accessories from SCHUNK - the complete range of modules for perfect interplay between the robot arm and the tool. Suitable for all types of robot, it is also an ideal enhancement to flexible robot applications.

## Machine Vision

In automated assembly, image processing modules from SCHUNK represent the flexible solution for manifold sensor applications. All high-quality components are perfectly phased to each other. The necessary software for object and position detection stands for $100 \%$ process reliability.

## Modular Assembly Automation

Flexible - fast - future-secure. This is the system GEMOTEC from SCHUNK. The comprehensive program of pneumatic and electric modules opens an unforeseen variety of combination possibilities. All actuators are compatible with each other. Where other companies still have to conduct design work, the system GEMOTEC is already assembled. Fast and straightforward.


SCHUNK sets Standards


## SCHUNK sets Standards

## Product highlight - SWS Quick-change System

## The shortest possible changeover times, safety included

Wherever short changeover times between a handling device and a robot tool is required, the SWS quick-change system is the ideal choice. The patented highlight is the pneumatically operated locking mechanism for force-free locking and unlocking as well as for self maintained locking in locked position. Using adapters, SWS is universal and increases the flexibility of the robot in all automated production lines.

## Facts which speak for themselves:

- Complete series with 11 sizes
- Compact dimensions as drive is incorporated into the housing
- High bearing load capacity

■ Option for universal energy transmission for fluid media with self-sealing couplings

- Optional adapter coding via plug connector



## Tool Changing



| Series | Size | Page |
| :---: | :---: | :---: |
| Miniafure Change System |  |  |
| MWS |  | 14 |
| MWS | 020 | 18 |
| Quick-change System |  |  |
| SWS-I |  | 22 |
| SWS-I | 011 | 26 |
| SWS |  | 30 |
| SWS | 005 | 36 |
| SWS | 011 | 40 |
| SWS | 020 | 44 |
| SWS | 021 | 50 |
| SWS | 040 | 56 |
| SWS | 041 | 62 |
| SWS | 060 | 68 |
| SWS | 071 | 74 |
| SWS | 110 | 80 |
| SWS | 150 | 84 |
| SWS | 300 | 90 |
| SWS-L | 210 | 96 |
| SWS-L | 310 | 100 |
| SWS-L | 510 | 104 |
| SWS-L Options |  | 108 |
| SWS-L | 602 | 110 |
| SWS Options |  | 112 |
| Al5 for SWS |  | 114 |
| B15 for SWS |  | 116 |
| E2A for SWS |  | 118 |
| E3A for SWS |  | 120 |
| E10-005 for SWS |  | 122 |
| E10-010 for SWS |  | 124 |
| E20 for SWS |  | 126 |
| G19 for SWS |  | 128 |
| G26 for SWS |  | 130 |
| K19 for SWS |  | 132 |
| K26 for SWS |  | 134 |
| MT8 for SWS |  | 136 |
| MT14 for SWS |  | 138 |
| R19 for SWS |  | 140 |
| R26 for SWS |  | 144 |
| R32 for SWS |  | 148 |
| SWM for SWS |  | 150 |
| SWM-S for SWS |  | 152 |
| SWM-M for SWS |  | 158 |


| Series | Size | Page |
| :---: | :---: | :---: |
| Gripper Change System |  |  |
| GWS |  | 160 |
| GWS | 064 | 164 |
| GWS | 080 | 168 |
| GWS | 125 | 172 |
| Manual Gripper Change System |  |  |
| HWS |  | 176 |
| HWS | 040 | 180 |
| HWS | 050 | 182 |
| HWS | 063 | 184 |
| HWS | 080 | 186 |
| HWS | 100 | 188 |
| HWS | 125 | 190 |
| Flat Manual Gripper Change System |  |  |
| FWS |  | 192 |
| FWS | 050 | 196 |



## Application example



Automated assembly of writing utensils:
Lead refills are inserted into mechanical pencils. The MWS ensures fast changing of the gripping modules and tools.


MWS 20 Miniature Quick-change System
(2) ELM 23-H70 Linear Module with direct drive (GEMOTECH System)

3 ELM 37-H260 Linear Module with direct drive (GEMOTECH System)

## Miniature Change Systems

Manual tool changing system for small manipulators and grippers, with integrated air and electric feed-through

## Area of application

Ideal for use in microsystems technology, especially for handling of miniature components

## Your advantages and benefits

Extremely flat design
for low interfering contours
Easy handling without the need of additional tools Can be released easily and quickly
Free center bore
for feed-through of parts, camera, laser beams, etc.
Integrated feed-throughs
for 6 fluid or electric media/signals
Suitable storage rack
for reliable positioning of your tools available as accessory
ISO flange pattern
for easy installation, conforms to DIN 32565 Level 4

## General information on the series

## Working principle

locking is achieved by turning the actuating ring

## Actuation

manual via integrated locking ring
Energy transmission
integrated pneumatic/fluid and electric feed-hhrough
Warranty
24 months

## Sectional diagram


(1) End plate
(2) Locking ring
self-locking and sturdy
(3) Torque pin
for exact coupling and maximum precision
(4) Locking mechanism self-locking and sturdy
(5) Pneumatic feed-through
no interfering contour due to integration in housing
(6) Electric feed-through
for electric energy and signal transmission

## Functional characteristics

The miniature change system (MWS) consists of a miniature change head (MWK) and a miniature change adapter (MWA).
The miniature change head (MWK) is connected with the miniature change adapter (MWA) by a form-fit connection by actuating the locking ring.
Integrated pneumatic feed-throughs supply the tool reliably with energy.

## Accessories

Accessories from SCHUNK -
the suitable supplement for
maximum functionality,
reliability and performance
of all outomation modules.

(i) The specific size of the desired accessories, availability for the model and the name and ID no. can be found in the additional diagrams following each model.

## General notes on the series

Utilization under extreme ambient conditions
Please be aware that use under extreme conditions (e.g. with coolants, or in the presence of casting dust or abrasive dust) can significantly reduce the tool life of these units, for which we can make no guarantee. In many cases, however, we have a solution. Please contact us.


## Moment load



## Technical data

| Designation |  | MWK 020 | MWA 020 |
| :---: | :---: | :---: | :---: |
|  | ID | 0305623 | 0305624 |
| Maximum payload | [kg] | 0.5 |  |
| Required locking force/unlocking force | [ N ] | 7 ... 13 |  |
| Required locking moment | [Nm] | 0.1 ... 0.2 |  |
| Repeat accuracy | [mm] | 0.1 |  |
| Total weight | [kg] | 16 |  |
| Weight of head | [g] | 7 |  |
| Weight of adapter | [g] | 9 |  |
| Pneumatic energy transmission (direct connection) |  | 2 x | (can be expanded up to 6x, if there is no electric energy transmission) |
| Electric energy transmission |  | 4 x | (can be expanded up to 6x, if there is no pneumatic energy transmission) |
| Max. permissible XY axis misalignment during coupling (calculated) | [mm] | $\pm 0.3$ |  |
| Max. permissible angular misalignment on Z during coupling (calculated) | [ ${ }^{\circ}$ | $\pm 0.8$ |  |
| Max. distance during locking in $Z$ | [mm] | 0.25 |  |
| Max. static moment $M_{X}$ and $M_{Y}$ | [Nm] | 0.5 |  |
| Max. static moment $M_{Z}$ | [ Nm ] | 0.2 |  |
| Max. tensile force load in $Z$ | [ N ] | 50 |  |
| Spring-mounted electric contacts |  | , Imax=1 A |  |
| Diameter of center bore | [mm] | 7.5 |  |

## Main views



The drawing shows the basic version of the quick-change system without dimensional consideration of the options described below.
(1) Connection, robot-side
(2) Connection, tool-side
(24) Bolt pitch circle
(28) Through-bore
(90) Unlocked position
(91) Locked position

## MWS 020

Tool Changing • Miniature Change System

## Function of fluid and electric feed-through


(25) Fluid feed-through
(26) Electric signal feed-through
(27) Electric power feed-through

Electric option for MWS 20

| Designation | ID |  |
| :--- | :--- | :--- |
| MWKE4 | 305693 | Electric contact $4 \times 24 \mathrm{VDE} / 1$ A for MWK |
| MWA-E4 | 305694 | Electric contact $4 \times 24$ VDE/1 A for MWA |

## Position of fluid and electris feed-through


(25) Fluid feed-through
(26) Electric signal feed-through
(27) Electric power feed-through
$\qquad$

Tool Changing • Quid-change System • With integrated Valves


Application example


6-axis buckling-arm robot for changing the gripper tools from the storage rack SWM-S. The storage rack contains applicationspecific tools with collision- and overload protection (OPR), compensation units (AGE) or insertion units (FUS).
1
Quick-change Head SWK-I-011
(2) Quick-change Adapter SWA-I-011
(3) Application-specific Gripper tools

## Quick-change System

pneumatic tool change system with integrated $3 / 2$
directional valves and patented locking system

## Area of application

Can be used wherever short changeover times between a handling device and a tool are required

## Your advantages and benefits

Integrated 3/2 directional control valve for easy hose connection and assembly
Patented self-retaining system
for a safe connection between gripper-change head and gripper-change adapter
Drive incorporated into the housing
for compact dimensions and fewer interfering contours.
All functional components are made from hardened steel for a greater change system load bearing capacity
Integrated electric feed-through
for safe monitoring of tools
Integrated air feed-through
for safe energy supply to the handling modules and tools
Storage racks to fit all sizes
available as an accessory for reliable positioning of your tools
ISO flange
for easy attachment to most types of robots without additional adapter plates

## General information on the series

| Working principle | Ambient temperature |
| :--- | :--- |
| Piston-activated locking bearings | From $5^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ |
| Material | Energy transmission |
| Housing made from high-strength, hard-coated aluminum, functional components | Variable via attachment modules, depending on the type <br> made from hardened steel <br> Actuation |
| Self-locking |  |
| Pneumatic, with filtered compressed air $(10 ~ \mu \mathrm{~m})$ : dry or lubricated | Mechanical when locking |
| Operating pressure range | Warranty |
| From 4.5 bar to 6 bar | 24 months |
| Maintenance |  |
| Prelubricated - relubrication recommended after 2 million cycles |  |

## Sectional diagram



Locking mechanism
trouble-free locking and unlocking, self-locking in locked position

2 Drive
pneumatic and powerful with extremely easy handling

3 Pneumatics freed-through
incorporation into the housing therefore no interfering contours

4 Integrated 3/2 directional valves
for control of the change system and the tool

## Function description

The quick-change system SWS-I consists of a robot-side change-head and a tool-side change-adapter. The adapter is self-locking in the head via a patented ball mechanism and it is supplied with compressed air by the integrated valves. Two of the six $3 / 2$ pneumatic valves are required for locking and unlocking of the adapter; the other four are available for other tasks.
The electric supply of the tools takes place via a contact plate with six free contacts, which supply, for example up to four proximity switches with electricity or can return their signals to the control system.

## Accessories

## Storage racks

Accessories from SCHUNK -
the suitable complement for
the highest level of function-
ality, reliability and consis-
tent performance of all
automaton modules.


## Cable connectors


(i) For the exact size of the accessories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question.

## General information on the series

## Use under extreme ambient conditions

Please note that the use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the life span of these units and we cannot accept any liability for this reduction.
However, in many cases we have a solution at hand. Please ask for details.


## Product description

Small, light-weighted and compact with six pieces integrated $3 / 2$ directional valves.
No-Touch-Locking ${ }^{\text {TM }}$
Locking without touching. Ensures that the SWS is securely locked even when the SWK and SWA do not touch. A maximum distance of 3 mm is possible.
Patented, self-retaining locking system Air feed-through with specially developed rubber seals

## Moment load


(i) The dynamic moment load can be up to three times longer than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWK---011-4-6-R | SWK--1011-4-6-A | SWA-I-011-4-6 |  |
| :---: | :---: | :---: | :---: | :---: |
| ID | 0302811 | 0302812 | 0302810 |  |
|  | Head | Head | Adapter |  |
| Cable and air outlet |  | radial | axial |  |
| Maximum payload [kg] | 16 | 16 | 16 | At low moments a higher payload is possible |
| Locking force (from 6 bar) [N] | 1068 | 1068 | 1068 | At higher tensile forces the system "falls" into the self-retaining status |
| Repeatability [mm] | 0.01 | 0.01 | 0.01 | Tested at 1 million cycles |
| Weight [kg] | 0.59 | 0.59 | 0.59 | Head-side 0.495 kg ; adapter side 0.095 kg |
| Maximum distance on locking [mm] | 3.0 | 3.0 | 3.0 | No-Touch-LockingTM technology allows the parts to be coupled without the head and adapter touching |
| Energy transmission pneumatic | $4 \times$ preumatic M5 max. 7 bar |  |  |  |
| Energy transmission electrical | 6x3A/50V | 6x 3A/50V | 6x 3 $/ 50 \mathrm{~V}$ |  |
| Maximum permissible XY offset [mm] | $\pm 1$ | $\pm 1$ | $\pm 1$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset [ ${ }^{\circ}$ ] | $\pm 2$ | $\pm 2$ | $\pm 2$ | Maximum permissible angular offset around the Z axis when locking |

## Main views SWK-I-0 1 1-4-6-R and SWA-I-0 1 1-4-6


(1) Connection unit
(2) Connection assembly
(24) Bolt pitch circle
(9) Energy transmission
(91) Main connection for compressed air

Change in dimensions SWK-I-01 1-4-6-A

(1) Connection unit
(2) Connection assembly
(24) Bolt pitch circle

SWA-I-011 with pluggable electrical option


| Designation | ID |
| :--- | :---: |
| SWA--011--4-S | 0302809 |
| Cable connector enclosed. |  |

## Distribution flange (axial on radial)



SWA with distribution flange and rack bolt
The distribution flange is mounted on the SWA and allows radial grip of air ot the SWA.

Optionally, 3 bolts can be mounted on the SWM for storage purposes.

## Distribution flange without workpiece stops


(25) Air feed-through

| Designation | ID |
| :--- | :---: |
| A-SWA--011-V | 0302813 |

Distribution flange with workpiece stops

25) Air feed-through

| Designation | ID | Scope of delivery |
| :--- | :---: | :---: |
| Distribution flange | 0302813 | $1 x$ |
| A-SWA--011-V | 0302577 | $3 x$ |

## Cable connector



| Designation | ID |
| :---: | :---: |
| for SWK---011-4-6-R (ID 0302811) |  |
| KASSWKK--011-90 | 9949866 |
| for SWK-I-011-4-6-R (ID 0302811) |  |
| KAS-D15-SWK--0 | 0301282 |

## Standard adpater plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A31.5

For mounting the SWK-011 directly to the flange in accordance with ISO 9409-1A31.5

| Designation | ID |
| :--- | :--- |
| A-SWK-011-ISO-A-31.5 | 0302221 |


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A50

For mounting the SWK-011 directly to the flange in accordance with ISO 9409-1-A50

| Designation | ID |
| :--- | :--- |
| A-SWK-O11-ISO-A-50 | 0302223 |


(1) Robot-side connection
(2) Tool-side connection

Adapter plate A40
For mounting the SWK-011 directly to the flange in accordance with ISO 9409-1-A40

| Designation | ID |
| :--- | :--- |
| A-SWK-011-ISO-A-40 | 0302222 |

## Design note for adapter plates


(2) Tool-side connection

Recommendation for designing the adaptation. Adapters are required for sealing the piston area.


## Application example



Joining tool for attaching small to mediumsized workpieces. The tool can be used in both clean and dirty environments. The quick-change system means that it can be used alternately with other tools on the robot flange.
(1)

DPZ-plus 100 3-Finger Centric Gripper

2 FUS-213C Insertion Unit

## Quick-change System

Pneumatic tool changing system
with patented locking system

## Area of application

Can be used wherever short changeover times between a handling device and a tool (gripper, electrode holder) are required

## Your advantages and benefits

Complete series with 15 sizes
for an optimum selection of sizes and a wide range of applications
Patented self-retaining locking system
for a safe connection between the quick-change head and the quick-change adapter
Drive incorporated into the housing
for compact dimensions and fewer interfering contours
All functional components made from hardened steel for a greater change system load bearing capacity
Wide range of cable connectors
for universal energy transmission options
Integrated air feed-through
for safe energy supply to the handling modules and tools
Transmission options for other media
with optional self-sealing couplings
Adapter coding
possible via plug connection
Storage racks to fit all sizes
available as an accessory for reliable positioning of your tools

## ISO flange

for easy attachment to most types of robots without additional adapter plates

## General information on the series

Working principle
Piston-activated locking bearings
Material
Housing made from high-strength, hard-coated aluminum, functional components made from hardened steel

## Actuation

Pneumatic, with filtered compressed air ( $10 \mu \mathrm{~m}$ ): dry or lubricated
Operating pressure range
From 4.5 bar to 6 bar

## Maintenance

Prelubricated - relubrication recommended after 2 million cycles

## Ambient temperature

From $5^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

## Energy transmission

Variable via attachment modules, depending on the type
Monitoring for the locking mechanism
via inductive proximity switches, depending on the size
Self-locking
Mechanical when locking

## Warranty

24 months


## Sectional diagram


(1) Sensor monitoring for the locking mechanism
incorporated into the housing in the SWS-
110, optional with other sizes
(2) Housing
weight-reduced through the use of a highstrength aluminum alloy
(3) Drive
pneumatic and powerful with extremely easy handling
(4) Locking mechanism
trouble-free locking and unlocking, self-locking in locked position

## Function description

Automatic changing of the robot tool (e.g. gripper, vacuum lifting devices, pneumatically or electrically driven tools, electrode holders etc.) increases the flexibility of your robot. The quick-change system (SWS) consists of a quick-change head (SWK) and a quick-change adapter (SWA). The SWK, mounted onto the robot, couples up the SWA mounted onto your tool. A pneumatically driven locking piston, with its patented design, ensures that the connection is secure. After coupling, pneumatic and electric feed-throughs automatically supply your robot tool.

## Accessories



SIP sensor interface plate


Storage racks


## Cable connectors



## Electronic modules


(i) For the exact size of the accessories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question.

## General information on the series

## Use in extreme ambient conditions

Please note that use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the life span of these units and we cannot accept any liability for this reduction. However, in many cases we have a solution at hand. Please ask for details.

## Tool Changing • Quidk-change System

## Detailed function description



SWK - SWA before locking


Detailed view


SWK - SWA when locked

When the piston is actuated the locking balls are pushed under the hardened steel ring and the adapter is pulled onto the head.

Locking ball on the second locking piston bevel

First locking bevel


Detailed view


SWK - SWA in self-locking position

In the event of a drop in air pressure, the locking piston is held by the cylindrical part of the locking piston. The piston seal friction prevents the piston from moving due to its own weight or because of vibrations. The head and the adapter can only be separated by pneumatic actuation of the piston.

Locking ball on the cylindrical part of the locking piston. Compressed air is needed to detach it.


Detailed view

## Selecting the quick-change system

## 1. Size selection

a. Simple size determination

If the change system is subject to very low forces and moments you can select the quick-change head on the basis of the maximum payload.
Choose a quick-change system which has a maximum payload larger than the useful load of your robot.
Choose the accurate method if the change system is subject to higher moments.
b. The accurate method

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance ( D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## 2. Pneumatics and electrics

Determine the number and sizes of the pneumatic and electric feed-hhroughs.

## 3. Temperature and chemicals

Nitrile seals on the quick-change units ensure optimum air feed-through. Buna N 0 -rings seal the piston chamber very effectively.
Both materials are resistant to many chemicals and are suited to temperatures between $5^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.

## SWS sizes at a glance

| Designation |  | SWS-005 | SWS-011 | SWS-020 | SWS-021 | SWS-040 | SWS-041 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Recommended handling weight | [kg] | 8 | 16 | 25 | 25 | 50 | 50 |
| Locking force ot 5.5 bar | [N] | 690 | 1068 | 2314 | 2314 | 4540 | 4540 |
| Static moment $M_{x}$ and $M_{Y}$ | [ Nm ] | 12.5 | 25 | 56.5 | 56.5 | 157 | 157 |
| Static moment $M_{2}$ | [ Nm ] | 17 | 34 | 78 | 78 | 216 | 216 |
| Pneumatic feed-through |  | 6xM5 | 6x M5 | 12x M5 | $8 \times \mathrm{G} \mathrm{1/81}$ | $8 \times \mathrm{G} \mathrm{1/81}$ | 6xG3/8" |
| Air connections, locked and unlocked |  | M5 | M5 | M5 | M5 | 6 1/8" | G 1/8" |
| Designation |  | SWS-060 | SWS-071 | SWS-110 | SWS-150 | SWS-300 |  |
| Recommended handling weight | [kg] | 75 | 79 | 150 | 200 | 455 |  |
| Locking force ot 5.5 bar | [N] | 7387 | 8075 | 12149 | 16109 | 35333 |  |
| Static moment $M_{x}$ and $M_{Y}$ | [ Nm ] | 197 | 395 | 784 | 1356 | 3870 |  |
| Static moment $M_{z}$ | [ Nm ] | 294 | 395 | 784 | 1130 | 2825 |  |
| Pneumatic feed-through |  | $8 \times \mathrm{G} \mathrm{1/81}$ | $8 \times \mathrm{G} \mathrm{1/4} \mathrm{\prime}$ | $8 \times 63 / 8^{\prime \prime}$ | 10x G 3/8" | $10 \times 63 / 8^{\prime \prime}$ |  |
| Air connections, locked and unlocked |  | $\mathrm{G} 1 / 8^{\prime \prime}$ | G 1/8" | 6 1/8" | $\mathrm{G} 1 / 8^{\prime \prime}$ | $61 / 4^{\prime \prime}$ |  |



## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-005 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 8 | A larger payload is possible with smaller moments |
| Static moment load $\mathrm{M}_{\mathrm{N}}$ | [ Nm ] | 12.5 |  |
| Static moment load $M_{z}$ | [ Nm ] | 17 |  |
| Dynamic moment load $\mathrm{M}_{\text {Y }}$ | [ Nm ] | 37.5 |  |
| Dynamic moment load $M_{z}$ | [ Nm ] | 51 |  |
| Locking force (at 6 bar) | [N] | 710 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.01 | Tested at 1 million cycles |
| Weight | [kg] | 0.37 | $0.27 \mathrm{~kg} \mathrm{head} ; 0.1 \mathrm{~kg} \mathrm{adapter}$ |
| Min./max. distance on locking | [mm] | 1.5 / 3.0 | No.Touch-LockingTW technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | 6x pneumatic M5 | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 1$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 2$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views

(

The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

## Electrical options

| Designation |  | Detailed data sheet |
| :--- | :--- | ---: |
| B15 | 15 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, Sub-D connector | See "SWS options" chapter |
| E10 | 10 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, solder contacts | See "SWS options" chapter |
| E2A | 20 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, solder contacts | See "SWS options" chapter |
| E3A | 30 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, solder contacts | See "SWS options" chapter |
| Storage station for SWS | See "SWS options" chapter |  |

How to order (example)


## SWS-005

Tool Changing • Quidk-dhange System • Light Load

## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. B15)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the B15 module and the cable

| Straight |  |  |
| :--- | :--- | :--- |
| Cable connectors for | ID | Designation |
| B15 head | 0301264 | KAS-A15-K |
| B15 adapter | 0301265 | KAS-A15-A |

Sub-D connector B15


Option:
Sub-D connector with 15 spring-loaded, gold-coated pins ( $3 \mathrm{Amp} / 50 \mathrm{VAC}$ per pin)

| Designation | ID | Fits Description |
| :--- | :--- | :--- |
| B15 head | 9937326 | SWK 15 pin, 3 Amp/50 VAC E option with high-density <br> Sub-D connector |
| B15 adapter | 9937327 | SWA 15 pin, 3 Amp/50 VAC E option with high-density <br> Sub-D connector |

## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A31.5

For mounting the SWK-005 directly to a flange in accordance with ISO 9409-1-31.5-4-45

| Designation | ID |
| :--- | :--- |
| A-SWK-005-ISO-A-31.5 | 0302218 |

## Modular quick-change rack SWM-S



The modular "small" quick-change rack has been designed for the SWS-005 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and the tool size allows you to create a rack tailor-made to your application. The option of utilizing unused air feed-throughs for attaching the workpiece bolts is a unique feature.

| Designation | ID |
| :--- | :--- |
| A-SWK-005-ISO-A-40 | 0302219 |

## Adapter plate A40

For mounting the SWK-005 directly to a flange in accordance with ISO 9409-1-40-M6
(1) Robot-side connection
(2) Tool-side connection


## 

(1) Robot-side connection
(2) Tool-side connection

Adapter plate A50
For mounting the SWK-005 directly to a flange in accordance with ISO 9409-1-50-4-M6


| Designation | ID |
| :--- | :--- |
| A-SWK-005-ISO-A-50 | 0302220 |



## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-011 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 16 | A larger payload is possible with smaller moments |
| Static moment load $M_{X /}$ | [ Nm ] | 25 |  |
| Static moment load $M_{z}$ | [ Nm ] | 34 |  |
| Dynamic moment load $M_{X Y}$ | [ Nm ] | 75 |  |
| Dynamic moment load $M_{z}$ | [ Nm ] | 102 |  |
| Locking force (at 6 bar) | [N] | 1068 | In the event of higher tensile forces the system "falls" into the selflocking position |
| Repeat accuracy | [mm] | 0.01 | Tested at 1 million cycles |
| Weight | [kg] | 0.21 | 0.13 kg head; 0.08 kg adapter |
| Max. distance on locking | [mm] | 3.0 | No-Touch-LockingTW technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | 6x pneumatic M5 | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 1$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 2$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

## Electrical options

| Designation |  | Detailed data sheet <br> A15 |
| :--- | :--- | ---: |
| E10 | 15 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, Sub-D connector | See "SWS options" chapter |
| E20 | 10 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, solder contacts | See "SWS options" chapter |

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

## How to order (example)

## SWS-0 11

Tool Changing • Quidk-change System • Light Load

## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. A15)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the B15 module and the cable

| Straight |  |  |
| :--- | :--- | :--- |
| Cable connectors for | ID | Designation |
| B15 head | 0301264 | KAS-A15-K |
| B15 adapter | 0301265 | KAS-A15-A |

## Sub-D connector A15



Option:
Sub-D connector with 15 spring-loaded, gold-coated pins ( $3 \mathrm{Amp} / 50 \mathrm{VAC}$ per pin)

| Designation | ID | Fits Description |
| :--- | :--- | :--- |
| A15 head | 9936357 | SWK 15 pin, 3 Amp/50 VAC E option with Sub-D <br> connector |
| A15 adapter | 9936356 | SWA 15 pin, 3 Amp/50 VAC E option with Sub-D <br> connector |

## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A31.5

For mounting the SWK-011 directly to a flange in accordance with ISO 9409-1-31.5-4-4M5

| Designation | ID |
| :--- | :--- |
| A-SWK-011-ISO-A-31. 5 | 0302221 |

## Modular quick-change rack SWM-S



The modular "small" quick-change rack has been designed for the SWS-011 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and the tool size allows you to create a rack tailor-made to your application. The option of utilizing unused air feed-throughs for attaching the workpiece bolts is a unique feature.
(1) Robot-side connection
(2) Tool-side connection

Adapter plate A50
For mounting the SWK-011 directly to a flange in accordance with ISO 9409-1-50-4-M6


| Designation | ID |
| :--- | :--- |
| A-SWK-011-ISO-A-40 | 0302222 |


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A40

For mounting the SWK-01 1 directly to a flange in accordance with ISO 9409-1-40-M6

- . . . . . . .

| Designation | ID |
| :--- | :--- |
| A-SWK-011-SO-A-50 | 0302223 |



## Product description

## Moment load

(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.


## Technical data

## 12 size M5 air feed-throughs incorporated into the housing

No-Touch-Locking ${ }^{\text {TM }}$
Locking without touching. Ensures that the SWS is securely locked even when the SWK and SWA do not touch.
A maximum distance of 3 mm is possible.
Patented, self-retaining locking system A larger piston diameter and the OD locking mechanism increase the permissible moment load. Steel components made from stainless Rc 58. Air feed-through with specially developed rubber seals

| Designation | SWS-020 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 25 | A larger payload is possible with smaller moments |
| Static moment load $M_{X 1}$ | [ Nm ] | 56.5 |  |
| Static moment load $M_{z}$ | [ Nm ] | 78 |  |
| Dynamic moment load $M_{X Y}$ | [ Nm ] | 169.5 |  |
| Dynamic moment load $\mathrm{M}_{2}$ | [ Nm ] | 234 |  |
| Locking force (at 6 bar) | [ N ] | 2314 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 0.8 | 0.5 kg head; 0.3 kg adapter |
| Max. distance on locking | [mm] | 3.0 | No-Touch-LockingTM technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | 12x pneumatic M5 | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 1$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 2$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

## Electrical options

| Designation |  | Detailed data sheet |
| :---: | :---: | :---: |
| K19 | 19 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, MS connector | See "SWS options" chapter |
| K26 | 26 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, MS connector | See "SWS options" chapter |
| KM14 | 14-pin, ( $12 \times 5$ A/250 VAC* and |  |
|  | $2 \times 13$ / $/ 250 \mathrm{VAC}{ }^{*}$ ) | See "SWS options" chapter |

* 250 VAC grounding done by customer

How to order (example)


## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. K19)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the K19 module and the cable

|  | Straight |  |  | $90^{\circ}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Cable connectors for | ID | Designation | ID | Designation |  |
| K19 head | 0301240 | KASS-19B-K-O | 0301248 | KAS-19B-K-90 |  |
| K19 adapter | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |  |

## Quick-change connector K19



Option:
Miniature quick-change connector with protected contact and splash-proof contact pins (3 Amp/ 50 VAC per pin)
$\mathrm{K} 19=19$-pin

| Designation | ID | Fits Description |
| :--- | :--- | :--- |
| K19 head | 9937328 | SWK 19 pin, 3 Amp/50 VAC E option with miniature <br> quick-change connector |
| K19 adapter | 9937329 | SWA 19 pin, 3 Amp/50 VAC E option with miniature <br> quick-change connector |

## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A40

For mounting the SWK-020 directly to a flange in accordance with ISO 9409-1-40-M6

| Designation | ID |
| :--- | :--- |
| A-SWK-020-ISO-A-40 | 0302200 |

## Modular quick-change rack SWM-S



The modular "small" quick-change rack has been designed for the SWS-020 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and the tool size allows you to create a rack tailor-made to your application. The option of utilizing unused air feed-throughs for attaching the workpiece bolts is a unique feature.

| Designation | ID |
| :--- | :--- |
| A-SWK-O2O-ISO-A-50 | 0302201 |


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A50

For mounting the SWK-020 directly to a flange in accordance with ISO 9409-1-50-4-M6
(1) Robot-side connection
(2) Tool-side connection

Adapter plate A63
For mounting the SWK-020 directly to a flange in accordance with ISO 9409-1-63-4-M6


| Designation | ID |
| :--- | :--- |
| A-SWK-02O-ISO-A-63 | 0302202 |

## Typical set-up on the robot


when using the SIP sensor interface plate
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example - K19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-020

The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(1) Suitable adapter plates for ISO flanges available on request.

ling

Mode of operation of the SIP


Locked Unlocked
(1) Sensor for locked (INW 41/S 9941216)
(2) Sensor for unlocked (INW 41/S 9941216)
(3) Sensor target

Using the sensor interface plate, it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| $\operatorname{IN} 41 / \mathrm{S}$ | 9941216 |

$\qquad$


## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-021 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 25 | A larger payload is possible with smaller moments |
| Static moment load $M_{X 1}$ | [ Nm ] | 56.5 |  |
| Static moment load $M_{z}$ | [ Nm ] | 78 |  |
| Dynamic moment load $\mathrm{K}_{\mathrm{XY}}$ | [ Nm ] | 169.5 |  |
| Dynamic moment lood $M_{z}$ | [ Nm ] | 234 |  |
| Locking force (at 6 bar) | [N] | 2314 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 0.8 | $0.5 \mathrm{~kg} \mathrm{head} ; 0.3 \mathrm{~kg}$ adapter |
| Max. distance on locking | [mm] | 3.0 | No-Touch-LockingTW technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | 8x pneumatic G 1/8" | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 1$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 2$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

## Electrical options

| Designation |  | Detailed data sheet |
| :--- | :--- | ---: |
| K19 | 19 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, MS connector | See "SWS options" chapter |
| K26 | 26 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, MS connector | See "SWS options" chapter |
| KM14 | 14 -pin, $(12 \times 5 \mathrm{~A} / 250 \mathrm{VAC}$ and <br>  | $2 \times 13 \mathrm{~A} / 250 \mathrm{VAC})$ |

* 250 VAC grounding done by customer

How to order (example)


## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. K19)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the K19 module and the cable

|  | Straight |  |  | $90^{\circ}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Cable connectors for | ID | Designation | ID | Designation |  |
| K19 head | 0301240 | KAS-19B-K-O | 0301248 | KAS-19B-K-90 |  |
| K19 adapter | 0301241 | KAS-19B-A-O | 0301249 | KASS-19B-A-90 |  |

Quick-change connector K19/ K26


Option: Miniature quick-change connector with protected contact and splash-proof contact pins ( $3 \mathrm{Amp} / 50 \mathrm{VAC}$ per pin)
$\mathrm{K} 19=19$-pin

| Designation | ID | Fits Description |
| :--- | :--- | :--- |
| K19 head | 9937328 | SWK 19 pin, 3 Amp/50 VAC E option with miniature <br> quick-change connector |
| K19 adapter | 9937329 | SWA 19 pin, 3 Amp/50 VAC E option with miniature <br> quick-change connector |

Design information for adapter plate

(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A40

For mounting the SWK-021 directly to a flange in accordance with ISO 9409-1-40-M6

| Designation | ID |
| :--- | :--- |
| A-SWK-02O-ISO-A-40 | 0302200 |

## Modular quick-change rack SWM-S



The modular "small" quick-change rack has been designed for the SWS-021 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and the tool size allows you to create a rack tailor-made to your application. The option of utilizing unused air feed-throughs for attaching the workpiece bolts is a unique feature.

| Designation | ID |
| :--- | :--- |
| A-SWK-O2O-ISO-A-50 | 0302201 |


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A50

For mounting the SWK-021 directly to a flange in accordance with ISO 9409-1-50-4-M6
(1) Robot-side connection
(2) Tool-side connection

Adapter plate A63
For mounting the SWK-020 directly to a flange in accordance with ISO 9409-1-63-4-M6


| Designation | ID |
| :--- | :--- |
| A-SWK-02O-ISO-A-63 | 0302202 |

## Typical set-up on the robot


when using the SIP piston stroke control
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example: K19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-02 1

The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(1) Suitable adapter plates for ISO flanges available on request.


Mode of operation of the SIP


Locked
Unlocked
(1) Sensor for locked IN 41/S 9941216
(2) Sensor for unlocked
(3) Sensor target

Using the piston stroke control it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| $\mathbb{I N} 41 / \mathrm{S}$ | 9941216 |

正


## Product description

Three times moment rigidity and two times payload in comparison to SWS-020

## No-Touch-Locking ${ }^{\text {TM }}$

Locking without touching. Ensures that the SWS is securely locked even when the SWK and SWA do not touch. A maximum distance of 5 mm is possible.
Patented, self-retaining locking system
A larger piston diameter and the outwards gripping locking mechanism increase the permissible moment load. Steel components made from stainless Rc 58. Air feed-through with specially developed rubber seals

## Moment load


(1) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-040 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 50 | A larger payload is possible with smaller moments |
| Static moment load $M_{X /}$ | [ Nm ] | 157 |  |
| Static moment load $M_{z}$ | [ Nm ] | 216 |  |
| Dynamic moment load $\mathrm{KXV}^{\prime}$ | [ Nm ] | 471 |  |
| Dynamic moment lood $M_{2}$ | [ Nm ] | 648 |  |
| Locking force (at 6 bar) | [N] | 4540 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 1.7 | 1.1 kg head; 0.6 kg adapter |
| Min./max. distance on locking | [mm] | 5.0 | No.Touch-LockingTh technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | 8x pneumatic G 1/8" | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 2$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

## Electrical options

| Designation |  | Detailed data sheet |
| :---: | :---: | :---: |
| R19 | 19 pins, $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{*}$, MS connector | See "SWS options" chapter |
| R26 | 26 pins, $3 \mathrm{~A} / 250 \mathrm{VAC}^{*}$, MS connector | See "SWS options" chapter |
| G19 | 19 pins, $5 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector, pivotable connector socket | See "SWS options" chapter |
| G26 | 26 pins, $3 \mathrm{~A} / 250 \mathrm{VAC}$, ${ }^{*}$ MS connector, pivotable connector socket | See "SWS options" chapter |
| MT8 | 8 pins, $20 \mathrm{~A} / 500 \mathrm{VAC}{ }^{* *}$ | See "SWS options" chapter |
| MT14 | 14 pins, $13 \mathrm{~A} / 500 \mathrm{VAC**}$ | See "SWS options" chapter |

[^0]A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(11) Driling pattern on both sides
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

How to order (example)


## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. R19)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the R19 module and the cable

|  | Straight |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Cable connectors for | ID | Designation | ID | Designation |
| R19 head | 0301240 | KAS-19B-K-O | 0301248 | KAS-19B-K-90 |
| R19; R14; | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |
| R10 adapter |  |  |  |  |

## Quick-change connector R19



Option: Miniature quick-change connector with protected contact and splash-proof contact pins ( $5 \mathrm{Amp} / 250 \mathrm{VAC}$ per pin). With tool coding as an option.
R19 $=19$-pin

| Designation | ID | Fits Description |
| :---: | :---: | :---: |
| R19 head | 9935815 | SWK 19 pins, 5 Amp/250 VAC* E option with miniature quick-change connector |
| R19 adapter | 9935816 | SWA 19 pins, 5 Amp/ 250 VAC ${ }^{*}$ E option with miniature quick-change connector |
| R14 adapter | 9935100 | SWA tool coding 0.9 tools, 5 Amp/250 VAC* 14 -pin can be used by customer - see drawing, fits R19 head |
| R10 adapter | 9941385 | SWA tool coding 0.99 tools, 5 Amp/250 VAC* 10 -pin can be used by customer - see drowing, fits R19 head |

* 250 VAC grounding done by customer


## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A80

For mounting the SWK-040 directly to a flange in accordance with ISO 9409-1-80-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-040-ISO-A-80 | 0302203 |


(1) Robot-side connection
(2) Tool-side connection

Adapter plate A100
For mounting the SWK-040 directly to a flange in accordance with ISO 9409-1-100-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-040-ISO-A-100 | 0302204 |

Modular quick-change rack SWM-M


The modular "medium" quick-change rack has been designed for the SWS-040 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and tool size allows you to create a rack tailor-made to your application.

## Typical set-up on the robot


when using the SIP piston stroke control
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example-R19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-040


The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(1) Suitable adapter plates for ISO flanges available on request.

Mode of operation of the SIP


Locked Unlocked
(1) Sensor for locked (INW 80/S 0301508 or 0301408)
(2) Sensor for unlocked (INW 80/S 0301508 or 0301408)
(3) Sensor target

Using the piston stroke control it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| INW 80/S-M12 | 0301508 |
| INW 80/S-M8 | 0301408 |

Inductive proximity switch in conjunction with R19-W

| Designation | ID |
| :--- | :--- |
| IN-C $80 / S$-M8 | 0301475 |

## Electronic module R19-W



With connection option for proximity switch
The piston stroke control proximity switches can be monitored via the R19 electronic module. In order to do this, the cables are connected directly to the module.

| Designation | ID |  |
| :--- | :--- | :--- |
| R19-W | 9942041 | 19 pins $5 \mathrm{~A} / 250 \mathrm{~V}, 15$ are free and 4 pins are <br> needed for the proximity switches |

Option also available for other electronic modules


## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data



## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment (mxD)
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(19) Screw connection area for options
(24) Bolt pitch circle

Cable connectors

| Designation |  | Detailed data sheet |
| :---: | :---: | :---: |
| R19 | 19 pins, $5 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector | See "SWS options" chapter |
| R26 | 26 pins, $3 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector | See "SWS options" chapter |
| G19 | 19 pins, $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\star}, \mathrm{MS}$ connector, pivotable connector socket | See "SWS options" chapter |
| G26 | 26 pins, $3 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector, pivotable connector socket | See "SWS options" chapter |
| MT8 | 8 pins, $20 \mathrm{~A} / 500 \mathrm{VAC}$ ** | See "SWS options" chapter |
| MT14 | 14 pins, $13 \mathrm{~A} / 500 \mathrm{VAC**}$ | See "SWS options" chapter |

[^1]How to order (example)


## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. R19)
(5) Cable connector for option 1
(6) Option 2

## Cable connedtors



Cable connector for the connection between the R19 module and the cable

|  | Straight |  |  | $90^{\circ}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Cable connectors for | ID | Designation | ID | Designation |  |
| R19 head | 0301240 | KAS-19B-K-O | 0301248 | KAS-19B-K-90 |  |
| R19; R14; | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |  |
| R10 adapter |  |  |  |  |  |

## Quick-change connector R19



Option: Miniature quick-change connector with protected contact and splash-proof contact pins ( $5 \mathrm{Amp} / 250 \mathrm{VAC}$ per pin). With tool coding as an option.
R19 $=19$-pin

| Designation | ID | Fits Description |
| :---: | :---: | :---: |
| R19 head | 9935815 | SWK 19 pins, $5 \mathrm{Amp} / 250 \mathrm{VAC}{ }^{\star}$ E option with miniature quick-change connector |
| R19 adapter | 9935816 | SWA 19 pins, $5 \mathrm{Amp} / 250 \mathrm{VAC}{ }^{\star}$ E option with miniature quick-change connector |
| R14 adapter | 9935100 | SWA tool coding 0.9 tools, $5 \mathrm{Amp} / 250 \mathrm{VAC}$ * 14 pins can be used by customer - see drawing, fits R19 head |
| R10 adapter | 9941385 | SWA tool coding 0.99 tools, $5 \mathrm{Amp} / 250 \mathrm{VAC}$. 10 pins can be used by customer - see drawing, fits R19 head |

* 250 VAC grounding done by customer


## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A80

For mounting the SWK-041 directly to a flange in accordance with ISO 9409-1-80-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-041-ISO-A-80 | 0302205 |


(1) Robot-side connection
(2) Tool-side connection

Adapter plate A100
For mounting the SWK-041 directly to a flange in accordance with ISO 9409-1-100-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-041-SO-A-100 | 0302206 |

Modular quick-change rack SWM-M


The modular "medium" quick-change rack has been designed for the SWS-041 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and tool size allows you to create a rack tailor-made to your application.

## Typical set-up on the robot


when using the SIP piston stroke control
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example-R19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-04 1


The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(1) Suitable adapter plates for ISO flanges available on request.

Mode of operation of the SIP


Locked Unlocked
(1) Sensor for locked (INW 80/S 0301508 or 0301408)
(2) Sensor for unlocked (INW 80/S 0301508 or 0301408)
(3) Sensor target

Using the piston stroke control it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| INW $80 / S$-Ml2 | 0301508 |
| INW $80 / S$-M8 | 0301408 |

Inductive proximity switch in conjunction with R19-W

| Designation | ID |
| :--- | :--- |
| $\mid N-B 80 / S$-M8 | 0301475 |

## Electronic module R19-W



With connection option for proximity switch
The piston stroke control proximity switches can be monitored via the R19-W electronic module. In order to do this, the cables are connected directly to the module.

| Designation | ID |  |
| :--- | :--- | :--- |
| R19-W | 9942041 | 19 pins $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{*}, 15$ are free and 4 pins are <br> needed for the proximity switches |

[^2]Option also available for other electronic modules


## Product description

## Light and compact with an extremely high locking force

## No-Touch-Locking ${ }^{\text {TM }}$

Locking without touching. Ensures that the SWS is securely locked even when the SWK and SWA do not touch. A maximum distance of 5 mm is possible.
Patented, self-retaining locking system A larger piston diameter and the OD locking mechanism increase the permissible moment load. Steel components made from stainless Rc 58.
Air feed-through with specially developed rubber seals

## Moment load


(1) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS.060 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 75 | A larger payload is possible with smaller moments |
| Static moment load $M_{X Y}$ | [ Nm ] | 197 |  |
| Static moment load $M_{z}$ | [ Nm ] | 294 |  |
| Dynamic moment load $M_{x y}$ | [ Nm ] | 591 |  |
| Dynamic moment load $M_{2}$ | [ Nm ] | 882 |  |
| Locking force (at 6 bar) | [ N ] | 7387 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 2.0 | $1.3 \mathrm{~kg} \mathrm{head;} 0.7 \mathrm{~kg}$ adapter |
| Min./max. distance on locking | [mm] | 5.0 | No.Touch-LockingTW technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | 8x pneumatic $\mathrm{G} \mathrm{1/8"}$ | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

## Electrical options

| Designation |  | Detailed data sheet |
| :---: | :---: | :---: |
| K19 | 19 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, MS connector | See "SWS options" chapter |
| K26 | 26 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, MS connector | See "SWS options" chapter |
| KM14 | 14-pin, (12x5 A/250 VAC* and |  |
|  | $2 \times 13$ A/250 VAC*) | See "SWS options" chapter |

* 250 VAC grounding done by customer

How to order (example)


## SWS-060

Tool Changing • Quidk-change System • Medium Load

## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. K19)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the K19 module and the cable

|  | Straight |  |  | $90^{\circ}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Cable connectors for | ID | Designation | ID | Designation |  |
| K19 head | 0301240 | KAS-19B-K-O | 0301248 | KAS-19B-K-90 |  |
| K19 adapter | 0301241 | KAS-19B-A-O | 0301249 | KASS-19B-A-90 |  |

Quick-change connector K19


Option: Miniature quick-change connector with contact protected and splash-proof contact pins ( $3 \mathrm{Amp} / 50 \mathrm{VAC}$ per pin).
$\mathrm{K} 19=19$-pin

| Designation | ID | Fits Description |
| :--- | :--- | :--- |
| K19 head | 9937328 | SWK 19 pin, 3 Amp/50 VAC E option with miniature <br> quick-change connector |
| K19 adapter | 9937329 | SWA 19 pin, 3 Amp/50 VAC E option with miniature <br> quick-change connector |

Design information for adapter plate

(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A80

For mounting the SWK-060 directly to a flange in accordance with ISO 9409-1-80-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-O60-ISO-A-80 | 0302207 |


(1) Robot-side connection
(2) Tool-side connection

Adapter plate A100
For mounting the SWK-060 directly to a flange in accordance with ISO 9409-1-100-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-060-ISO-A-100 | 0302208 |

## Modular quick-change rack SWM-M



The modular "medium" quick-change rack has been designed for the SWS-060 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and tool size allows you to create a rack tailor-made to your application.

## Typical set-up on the robot


when using the SIP piston stroke control
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example: K19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-060


The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(1) Suitable adapter plates for ISO flanges available on request.

Mode of operation of the SIP


Locked Unlocked
(1) Sensor for locked (INW 80/S 0301508 or 0301408)
(2) Sensor for unlocked (INW 80/S 0301508 or 0301408)
(3) Sensor target

Using the piston stroke control it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| INW $80 / S$-Ml2 | 0301508 |
| INW $80 / S$-M8 | 0301408 |

$\qquad$


## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-071 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 79 | A larger payload is possible with smaller moments |
| Static moment load $M_{X 1}$ | [ Nm ] | 395 |  |
| Static moment load $\mathrm{M}_{2}$ | [ Nm ] | 395 |  |
| Dynamic moment load $\mathrm{K}_{\mathrm{XY}}$ | [ Nm ] | 1185 |  |
| Dynamic moment lood $M_{z}$ | [ Nm ] | 1185 |  |
| Locking force (at 6 bar) | [N] | 8075 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 3.1 | $1.8 \mathrm{~kg} \mathrm{head;} 1.3 \mathrm{~kg}$ adapter |
| Min./max. distance on locking | [mm] | 5.0 | No-Touch-LockingTW technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | 8x pneumatic G 1/4" | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views

(

The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(11) Drilling pattern on both sides
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

How to order (example)


## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option I: Electric modules (e.g. R19)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the R19 module and the cable

|  | Straight |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Cable connectors for | ID | Designation | ID | Designation |
| R19 head | 0301240 | KAS-19B-K-O | 0301248 | KAS-19B-K-90 |
| R19; R14; | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |
| R10 adapter |  |  |  |  |

Quick-change connector R19/R26/R32


Option: Miniature quick-change connector with protected contact and splash-proof contact pins ( $5 \mathrm{Amp} / 250 \mathrm{VAC}$ per pin). With tool coding as an option.
R19 $=19$-pin

| Designation | ID | Fits Description |
| :--- | :--- | :--- |
| R19 head | 9935815 | SWK 19 pins, 5 Amp/250 VAC ${ }^{\star}$ E option with <br> miniature quick-change connector |
| R19 adapter | 9935816 | SWA 19 pins, 5 Amp/250 VAC ${ }^{\star}$ E option with <br> miniature quick-change connector |
| R14 adapter | 9935100 | SWA tool coding 0.9 tools, 5 Amp/250 VAC* 14 pins <br> can be used by customer - see drawing, fits R19 head |
| R10 adapter | 9941385 | SWA tool coding 0-99 tools, 5 Amp/250 VAC 10 pins <br> can be used by customer - see drawing, fits R19 head |

* 250 VAC grounding done by customer


## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A80

For mounting the SWK-071 directly to a flange in accordance with ISO 9409-1-80-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-071-ISO-A-80 | 0302209 |


(1) Robot-side connection
(2) Tool-side connection

Adapter plate A100
For mounting the SWK-071 directly to a flange in accordance with ISO 9409-1-100-6-M8

| Designation | ID |
| :--- | :--- |
| A-SWK-071-ISO-A-100 | 0302210 |

## Modular quick-change rack SWM-M



The modular "medium" quick-change rack has been designed for the SWS-071 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and tool size allows you to create a rack tailor-made to your application.

## Typical set-up on the robot


when using the SIP piston stroke control
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example: R19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-07 1


The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(1) Suitable adapter plates for ISO flanges available on request.

Mode of operation of the SIP


Locked Unlocked
(1) Sensor for locked (INW 80/S 0301508 or 0301408 )
(2) Sensor for unlocked (INW $80 / \mathrm{S} 0301508$ or 0301408 )
(3) Sensor target

Using the piston stroke control it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| INW $80 / S$-Ml2 | 0301508 |
| INW $80 / S$-M8 | 0301408 |

Inductive proximity switch in conjunction with R19-W

| Designation | ID |
| :--- | :--- |
| IN-C $80 / S$-M8 | 0301477 |

## Electronic module R19-W



With connection option for proximity switch
The piston stroke control proximity switches can be monitored via the R19-W electronic module. In order to do this, the cables are connected directly to the module.

| Designation | ID |  |
| :--- | :--- | :--- |
| R19-W | 9942041 | 19 pins $5 \mathrm{~A} / 250 \mathrm{VAC}$,, 15 are free and 4 pins are <br> needed for the proximity switches |

[^3]Option also available for other electronic modules


## Product description

## Outstanding weight/force ratio

## No-Touch-Locking ${ }^{\text {TM }}$

Locking without touching. Ensures that the SWS is securely locked even when the SWK and SWA do not touch. A maximum distance of 7 mm is possible.
Patented, self-retaining locking system A larger piston diameter and the OD locking mechanism increase the permissible moment load. Steel components made from stainless Rc 58.

## Integrated locking monitoring

for locked and unlocked

## Mounting option for DeviceNet module Direct mounting to ISO 9409-1-A125 adapter plates

Available for other flanges
Air feed-through with specially developed rubber seals

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-110 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 150 | A larger payload is possible with smaller moments |
| Static moment load $M_{\text {XI }}$ | [ Nm ] | 784 |  |
| Static moment load $M_{z}$ | [ Nm ] | 784 |  |
| Dynamic moment load $M_{X Y}$ | [ Nm ] | 2352 |  |
| Dynamic moment load $M_{2}$ | [ Nm ] | 2352 |  |
| Locking force (at 6 bar) | [ N ] | 12149 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 5.9 | $3.9 \mathrm{~kg} \mathrm{head;} 2.0 \mathrm{~kg}$ adapter |
| Min./max. distance on locking | [mm] | 7.0 | No-Touch-LockingTM technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | G 3/8" | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not incude the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(11) Drilling pattern on both sides
(24) Bolt pitch circle
(9) Optional proximity switch
(91) Screw connection area for option 2
(92) Screw connection area for option 1

How to order (example)

| SW $\square$-110- | -000 |  |
| :---: | :---: | :---: |
|  | SWS-110 | Examples |
|  | Option | SWK-110-000-000 |
|  | (000 $=$ no option) | (SWK-110, head side, no option) |
|  | $K=$ head | SWA-110-R19-000 |
|  | A = adapter | (SWA-110, adapter plate side, with R19 ontion) |

[^4]
## Cable connectors

| Designation |  | Detailed data sheet |
| :---: | :---: | :---: |
| R19 | 19 pins, $5 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector | See "SWS options" chapter |
| R26 | 26 pins, $5 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector | See "SWS options" chapter |
| G19 | 19 pins, $5 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector, pivotable connector socket | See "SWS options" chapter |
| 626 | 26 pins, $3 \mathrm{~A} / 250 \mathrm{VAC}$, MS connector, pivotable connector socket | See "SWS options" chapter |
| MT8 | 8 pins, $20 \mathrm{~A} / 500 \mathrm{VAC}{ }^{\text {** }}$ | See "SWS options" chapter |
| MT14 | 14 pins, $13 \mathrm{~A} / 500 \mathrm{VAC**}$ | See "SWS options" chapter |

## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option I: Electric modules (e.g. R19)
(5) Cable connector for option 1
(6) Option 2

## Quick-change connector R19



Option: Miniature quick-change connector with protected contact and splash-proof contact pins ( $5 \mathrm{Amp} / 250 \mathrm{VAC}$ per pin). With tool coding as an option.
R19 $=19$-pin

| Designation | ID | Fits Description |
| :--- | :--- | :--- |
| R19 head | 9935815 | SWK 19 pins, 5 Amp/250 VAC ${ }^{\star}$ E option with <br> miniature quick-chonge connector |
| R19 adapter | 9935816 | SWA 19 pins, 5 Amp/250 VAC ${ }^{\star}$ E option with <br> miniature quick-change connector |
| R14 adapter | 9935100 | SWA tool coding 0.9 tools, 5 Amp/250 VA ${ }^{\star} 14$ pins <br> can be used by customer - see drawing, fits R19 head |
| R10 adapter | 9941385 | SWA tool coding 0-99 tools, 5 Amp/250 VAC 10 pins <br> can be used by customer - see drawing, fits R19 head |

[^5]Cable connectors


Cable connector for the connection between the R19 module and the cable

|  | Straight |  |  | $90^{\circ}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Cable connectors for | D | Designation | ID | Designation |  |
| R19 head | 0301240 | KAS-19B-K- 0 | 0301248 | KAS-19B-K-90 |  |
| R19; R14; | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |  |
| R10 adapter |  |  |  |  |  |

## Proximity switth installation position


(90) Sensor for locked
(91) Sensor for unlocked
(92) Sensor for presence monitoring

Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| IN $81 / \mathrm{S}$ | 0302454 |

## Electronic module R19-R



With connector option for proximity switch
The piston stroke control proximity switches can be monitored via the R19 electronic module. In order to do this, the cables are connected directly to the module.

| Designation | ID |  |
| :--- | :--- | :--- |
| R19-R | 9942391 | 19 pins $5 \mathrm{~A} / 250 \mathrm{VAC}^{*}, 15$ are free and 4 pins are <br> needed for the proximity switches |

* 250 VAC grounding done by customer

Option also available for other electronic modules

## Modular quick-change rack SWM-M



The modular "medium" quick-change rack has been designed for the SWS-110 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and tool size allows you to create a rack tailor-made to your application.


## Product description

## Extremely high locking forces

## No-Touch-Locking ${ }^{\text {TM }}$

Locking without touching. Ensures that the SWS is securely locked even when the SWK and SWA do not touch. A maximum distance of 7 mm is possible.

Patented, self-retaining locking system A larger piston diameter and the OD locking mechanism increase the permissible moment load. Steel components made from stainless Rc 58.
Air feed-through with specially developed rubber seals

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-150 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 200 | A larger payload is possible with smaller moments |
| Static moment load $M_{X Y}$ | [ Nm ] | 1356 |  |
| Static moment load $M_{z}$ | [ Nm ] | 1130 |  |
| Dynamic moment load $M_{x y}$ | [ Nm ] | 4068 |  |
| Dynamic moment load $M_{2}$ | [ Nm ] | 3390 |  |
| Locking force (at 6 bar) | [ N ] | 16109 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 7.5 | 4.8 kg head; 2.7 kg adapter |
| Min./max. distance on locking | [mm] | 7.0 | No-Touch-LockingTM technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | ic G 3/8" | Max. 7 bar |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( $\mathrm{m} \times \mathrm{D}$ )
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Throughh-bore for screw connection with screw (enclosed)
(11) Drilling pattern on both sides
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

How to order (example)

option)
SWA-150-R19-000
(SWA-150, head side, with R19 option)

## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option I: Electric modules (e.g. R19)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the R19 module and the cable

|  | Straight |  |  | $90^{\circ}$ |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| Cable connectors for | ID | Designation | ID | Designation |  |
| R19 head | 0301240 | KAS-19B-K-O | 0301248 | KAS-19B-K-90 |  |
| R19; R14; | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |  |
| R10 adapter |  |  |  |  |  |

## Quick-change connector R19



Option: Miniature quick-change connector with protected contact and splash-proof contact pins ( $5 \mathrm{Amp} / 250 \mathrm{VAC}$ per pin). With tool coding as an option.
R19 $=19$-pin

| Designation | ID | Fits Description |
| :---: | :---: | :---: |
| R19 head | 9935815 | SWK 19 pins, 5 Amp/250 VAC* E option with miniature quick-change connector |
| R19 adapter | 9935816 | SWA 19 pins, 5 Amp/ 250 VAC ${ }^{*}$ E option with miniature quick-change connector |
| R14 adapter | 9935100 | SWA tool coding 0.9 tools, $5 \mathrm{Amp} / 250 \mathrm{VAC}$ * 14 pins can be used by customer - see drowing, fits R19 head |
| R10 adapter | 9941385 | SWA tool coding 0.99 tools, $5 \mathrm{Amp} / 250 \mathrm{VAC} 10$ pins can be used by customer - see drowing, fits R19 head |

* 250 VAC grounding done by customer


## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A125

For mounting the SWK-150 directly to a flange in accordance with ISO 9409-1-125-6-M10

| Designation | ID |
| :--- | :--- |
| A-SWK-I50-ISO-A-125 | 0302213 |


(1) Robot-side connection
(2) Tool-side connection

Adapter plate A160
For mounting the SWK-150 directly to a flange in accordance with ISO 9409-1-160-6-M10/ISO 9409-1-160-11-M12

| Designation | ID |
| :--- | :--- |
| A-SWK-150-ISO-A-160 | 0302214 |

Modular quick-change rack SWM-M


The modular "medium" quick-change rack has been designed for the SWS-150 size. The system's modular structure enables you to assemble your rack on an individual basis. Depending on the number of tools, the storage position and tool size allows you to create a rack tailor-made to your application.

## Typical set-up on the robot


when using the SIP piston stroke control
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example: R19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-150


The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(i) Suitable adapter plates for ISO flanges available on request.

Mode of operation of the SIP


Locked Unlocked
(1) Sensor for locked (INW 80/S 0301508 or 0301408)
(2) Sensor for unlocked (INW 80/S 0301508 or 0301408)
(3) Sensor target

Using the piston stroke control it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designction | ID |
| :--- | :--- |
| IWW $80 /$ /-M12 | 0301508 |
| INW 80/SM8 | 0301408 |

Inductive proximity switch in coniunction with R19-W

| Designation | ID |
| :--- | :--- |
| IN-B 80/S-M8 | 0301475 |

## Electronic module R19-W



With connector option for proximity switch
The piston stroke control proximity switches can be monitored via the R19-W electronic module. In order to do this, the cables are connected directly to the module.

| Designation | ID |  |
| :--- | :--- | :--- |
| R19-W | 9942041 | 19 pins $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{*}, 15$ are free and 4 pins are <br> needed for the proximity swithes |

[^6]Option also available for other electronic modules


## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-300 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 455 | A larger payload is possible with smaller moments |
| Static moment load $M_{X Y}$ | [ Nm ] | 3870 |  |
| Static moment load $M_{z}$ | [ Nm ] | 2825 |  |
| Dynamic moment load $M_{x y}$ | [ Nm ] | 11610 |  |
| Dynamic moment load $M_{2}$ | [ Nm ] | 8475 |  |
| Locking force (at 6 bar) | [ N ] | 35333 | In the event of higher tensile forces the system "falls" into the self.locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 19.1 | 11.8 kg head; 7.3 kg adapter |
| Min./max. distance on locking | [mm] | 10 | No-Touch-Locking ${ }^{\text {TW }}$ technology allows the parts to be coupled without the head and the adapter touching |
| Pneumatic energy transmission |  | ic G 3/8" | Max. 7 bar, 8 are self-sealing |
| Maximum permissible XY offset | [mm] | $\pm 3$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |
| Electric energy transmission |  |  | $5 \times 5 \mathrm{~A} / 90 \mathrm{~V}$ |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance (D in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment (mxD)
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(5) Through-bore for screw connection with screw (enclosed)
(11) Drilling pattern on both sides
(18) Cable connector, by special order
(19) Screw connection area for options
(24) Bolt pitch circle
(25) Air feed-through

How to order (example)


## SWS-300

Tool Changing - Quidk-dhange System • Medium Load

## Typical set-up on the robot


(1) Adapter plate on ISO flange
(2) Quick-change head SWK
(3) Quick-change adapter SWA
(4) Option 1: Electric modules (e.g. R19)
(5) Cable connector for option 1
(6) Option 2

## Cable connectors



Cable connector for the connection between the R19 module and the cable

|  | Straight |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Cable connectors for | ID | Designation | ID | Designation |
| R19 head | 0301240 | KAS-19B-K- -0 | 0301248 | KAS-19B-K--90 |
| R19; R14; | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |
| R10 adapter |  |  |  |  |

## Quick-change connector R19



Option: Miniature quick-change connector with protected contact and splash-proof contact pins ( $5 \mathrm{Amp} / 250 \mathrm{VAC}$ per pin). With tool coding as an option.
R19 $=19$-pin

| Designation | ID | Fits Description |
| :---: | :---: | :---: |
| R19 head | 9935815 | SWK 19 pins, 5 Amp/ 250 VAC ${ }^{\star}$ E option with miniature quick-change connector |
| R19 adapter | 9935816 | SWA 19 pins, 5 Amp/ 250 VAC ${ }^{*}$ E option with miniature quick-change connector |
| R14 adapter | 9935100 | SWA tool coding 0.9 tools, $5 \mathrm{Amp} / 250 \mathrm{VAC}$ * 14 pins can be used by customer - see drawing, fits R19 head |
| R10 adapter | 9941385 | SWA tool coding 0.99 tools, $5 \mathrm{Amp} / 250 \mathrm{VAC}$. 10 pins can be used by customer - see drawing, fits R19 head |

* 250 VAC grounding done by customer


## Design information for adapter plate


(2) Tool-side connection

Adapter design recommendation. An adapter is required to seal the piston chamber.

## Standard adapter plates for ISO flanges


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A125

For mounting the SWK-300 directly to a flange in accordance with ISO 9409-1-125-6-M10

| Designation | ID |
| :--- | :--- |
| A-SWK-300-ISO-A-125 | 0302215 |

(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A160

For mounting the SWK-300 directly to a flange in accordance with ISO 9409-I-160-6-M10/ISO 9409-1-160-11-M12

| Designation | ID |
| :--- | :--- |
| A-SWK-300-ISO-A-160 | 0302216 |


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate A200

For mounting the SWK-300 directly to a flange in accordance with ISO 9409-1-200-6-M12/ISO 9409-1-200-12-M16

| Designation | ID |
| :--- | :--- |
| A-SWK-300-ISO-A-200 | 0302217 |

## Typical set-up on the robot


when using the SIP piston stroke control
(1) Adapter plate on ISO flange
(2) SIP piston stroke control
(3) Proximity switch
(4) Quick-change head SWK
(5) Quick-change adapter SWA
(6) Option 1 (example: R19)
(7) Cable connector (KAS) for option 1
(8) Option 2

Minimum height of adapter plate for SIP-300

The drawing shows the minimum height of the adapter plate needed for installing a piston stroke control.
(i) Suitable adapter plates for ISO flanges available on request.


Mode of operation of the SIP

(1) Sensor for locked (INW 80/S 0301508 or 0301408)
(2) Sensor for unlocked (INW 80/S 0301508 or 0301408)
(3) Sensor target

Using the piston stroke control it is possible to monitor the locked and unlocked position of the quick-change head by means of inductive proximity switches.

Proximity switch installation position


Inductive proximity switch

| Designation | ID |
| :--- | :--- |
| IWW $80 /$ /-M12 | 0301508 |
| IWW 80/SM8 | 0301408 |

Inductive proximity swith in coniunction with R19-W

| Designation | ID |
| :--- | :--- |
| IN-C 80/S-M8 | 0301475 |

## Electronic module R19-W



With connector option for proximity switch
The piston stroke control proximity switches can be monitored via the R19-W electronic module. In order to do this, the cables are connected directly to the module.

| Designation | ID |  |
| :--- | :--- | :--- |
| R19-W | 9942041 | 19 pins $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{*}, 15$ are free and 4 pins are <br> needed for the proximity swithes |

[^7]Option also available for other electronic modules

## Change • Quidk-dhange System • High Load Capasity



## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-L 210 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum paylood | [kg] | 225 | A larger payload is possible with smaller moments |
| Static moment load $M_{X Y}$ | [ Nm ] | 2700 |  |
| Static moment load $\mathrm{M}_{2}$ | [ Nm ] | 2260 |  |
| Dynamic moment load $\mathrm{M}_{\mathrm{XY}}$ | [ Nm ] | 8100 |  |
| Dynamic moment load $M_{z}$ | [ Nm ] | 6780 |  |
| Locking force (at 6 bar) | [N] | 31150 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 7.7 | $5.3 \mathrm{~kg} \mathrm{head;} 2.4 \mathrm{~kg}$ adapter |
| Min./max. distance on locking | [mm] | 2.0 | No-Touch-Locking ${ }^{\text {TW }}$ technology allows the parts to be coupled without the head and the adapter touching |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY axis offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance ( $D$ in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( mx D)
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system with a fluid module FH2 (SWK-210-BM-B2-SA2-FH2-000-000) and a signal module SA2

A Locked air connection
B Unlocked air connection
(5) Through-bores for screw connection with screw (enclosed)
(25) Fluid feed-through

## Mounting module options



The newly designed mounting surfaces enable fast and secure mounting of air, electric, water and other modules.
The same mounting surface is used for the SWS-L 210 , SWS-L 310 and the SWS-L 510.

## Change • Quidk-dhange System • High Load Capasity

## Locking and unlocking adapter



The change head (SWK) is supplied with pneumatic power by means of the locking and unlocking adapter. It is mounted on surface A and contains two air connections, one for locking and one for unlocking the SWK. The system is controlled by a valve provided by the customer.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWKK--JB2-M | 9948548 | Locking and unlocking adapter |

If further modules are to be mounted on the mounting surface A , a spacer must be mounted on the tool side.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWA-20-1197 | 9948547 | Spacer |

## Valve adapter



As an alternative to the use of a locking and unlocking adapter, it is possible to use a valve adapter. A double- or single-acting magnetic valve is integrated in the valve adapter for control of the SWK. The system is controlled by electrical connectors on the valve adapter. The signals can be transmitted by cables provided by the customer or via an electric module.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWKKL-JD2-M | 9948550 | Single-acting valve |
| SWK-LIF2-M | 9948552 | Double-acting valve |

If further modules are to be mounted on the mounting surface A , a spacer must be mounted on the tool side.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWA-20-1197 | 9948547 | Spacer |

## SAX signal module



- The SAX signal module enables signal transmission to the SWA and the control of the SWK.
- The electrical connection is established via an amphenol connector of the MS series. Customized connections are possible.
- The two ready-to-lock (R1 and R2) sensors and the proximity switches for "unlocked" and "locked" (U and L) can be connected directly to the SAX. The signals are transmitted to the robot controller via the amphenol connector.
- Up to 19 electric feed-throughs are available.
- Tool encoding: Up to 999 tools are available optionally.

| Designation | ID | Description |
| :---: | :---: | :---: |
| SWK-LSA2-M | 9948563 | E-module, 26-pin amphenol, 19-pin block, connection of L/U/RI/R2 sensors Without valve controller (compatible with SA2-T, SA3-T, SA4-T, and SA5-T) |
| SWA-LSA2-T | 9948555 | E-module, 19-pin amphenol, 19-pin block, 19 feed-throughs |
| SWA-LSA3-T | 9948556 | E-module, 19-pin amphenol, 19-pin block, 15 feed-throughs, tool encoding 0-9 |
| SWA-LSA4-T | 9948557 | E-module, 19-pin amphenol, 19-pin block, 11 feed-throughs, tool encoding 0.99 |
| SWA-LSA5-T | 9948558 | E-module, 19-pin amphenol, 19-pin block, 7 feed-throughs, tool encoding 0-999 |

## Change • Quidk-dhange System • High Load Capasity

## VA2 signal module



- The VA2 signal module enables signal transmission to the SWA and the control of the SWK.
- The electrical connection is established via an amphenol connector of the MS series. Customized connections are possible.
- The two ready-to-lock ( R 1 and R 2 ) sensors and the proximity switches for "unlocked" and "locked" (U and L) can be connected directly to the VA2. The signals are transmitted to the robot controller via the amphenol connector.
- Up to 19 electric feed-throughs are available.
- Tool encoding: Up to 999 tools are available optionally.
- If a valve block is used, the switch signal can be tapped directly at the VA2.
- TSI monitoring is available optionally. The TSI ensures that the actuating valve can be actuated only in the change position in the magazine.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWK-L-VA-T | 9948554 | E-module, 26-pin amphenol, 19-pin block, connection of L/U/R1/R2 sensors |
|  |  | With valve controller (compatible with SA2-T, SA3-T, SAA-T, and SA5-T) |

## How to order



Collar or step on the mounting surface

| A: No collar (head side), no step (tool side) | B: 80 mm distance/collar (only for 210) |
| :--- | :--- |
| C: 100 mm distance/collar (only for 210, 310) D: 125 mm distance/collar (only for 310, 510)  <br> E: 160 mm collar (only for 510)   <br> Size   <br> 2: SWS-210 3: SWS-310 5: SWS-510 |  |
| Page |  |
| K: Head (robot side) | A: Adapter (tool side) |

## Change • Quidk-dhange System • High Load Capacity



## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-L 310 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum paylood | [kg] | 500 | A larger payload is possible with smaller moments |
| Static moment load $M_{X Y}$ | [ Nm ] | 3870 |  |
| Static moment load $\mathrm{M}_{2}$ | [ Nm ] | 3150 |  |
| Dynamic moment load $M_{X Y}$ | [ Nm ] | 11610 |  |
| Dynamic moment load $M_{z}$ | [ Nm ] | 9450 |  |
| Locking force (at 6 bar) | [N] | 35333 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 20 | 12.5 kg head; 7.5 kg adapter |
| Min./max. distance on locking | [mm] | 2.5 | No-Touch-Locking ${ }^{\text {TW }}$ technology allows the parts to be coupled without the head and the adapter touching |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance ( $D$ in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( mx D)
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system with a fluid module FH2 (SWK-310-DM-JB3-SA2-FH2-000-000) and a signal module SA2 (SWA-310-SA2-FH2-000-000)

| A | Locked air connection | (24) Bolt pitch circle |
| :--- | :--- | :--- |
| B | Unlocked air connection | (25) Fluid feed-fhrough |
| (5) Through-bores for screw connection |  |  |
| with screw (enclosed) |  |  |

A Locked air connection
(5) Through-bores for screw connection with screw (enclosed)

Mounting module options


The newly designed screw connection surfaces enable fast and secure mounting of air, electric, water and other modules.
The same mounting surface is used for the SWS-L 210 , SWS-L 310 and the SWS-L 510.

## Change • Quidk-dhange System • High Load Capasity

## Locking and unlocking adapter



The change head (SWK) is supplied with pneumatic power by means of the locking and unlocking adapter. It is mounted on surface A and contains two air connections, one for locking and one for unlocking the SWK. The system is controlled by $a$ valve provided by the customer.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWKKL-IB3-M | 9948549 | Locking and unlocking adapter |

If further modules are to be mounted on the mounting surface $A$, a spacer must be mounted on the tool side.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWA-20-1197 | 9948547 | Spacer |

## Valve adapter



As an alternative to the use of a locking and unlocking adapter, it is possible to use a valve adapter. A double- or single-ating magnetic valve is integrated in the valve odopter for control of the SWK. The system is controlled by electical connectors on the valve adapter. The signals can be transmitted by cables provided by the customer or via on electric module.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWKKL-JD3-M | 9948551 | Single-acting valve |
| SWK-L-JF3-M | 9948553 | Double-acting valve |

If further modules are to be mounted on the mounting surface $A$, a spacer must be mounted on the tool side.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWA-20-1197 | 9948547 | Spacer |

## SAX signal module



- The SAX signal module enables signal transmission to the SWA and the control of the SWK.
- The electrical connection is established via an amphenol connector of the MS series. Customized connections are possible.
- The two ready-to-lock (R1 and R2) sensors and the proximity switches for "unlocked" and "locked" ( U and L ) can be connected directly to the SAX. The signals are transmitted to the robot controller via the amphenol connector.
- Up to 19 electric feed-throughs are available.
- Tool encoding: Up to 999 tools are available optionally.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWK-L-SAL-M | 9948563 | E-module, 26-pin amphenol, 19-pin block, connection of L/U/RI/R2 sensors <br> Without valve controller (compatible with SAL-T, SA3-T, SAA-T, and SA5-T) |
| SWA-L-SA2-T | 9948555 | E-module, 19-pin amphenol, 19-pin block, 19 feed-fhroughs |
| SWA-LSA3-T | 9948556 | E-module, 19-pin amphenol, 19-pin block, 15 feed-fhroughs, tool encoding 0-9 |
| SWA-LSAA-T | 9948557 | E-module, 19-pin amphenol, 19-pin block, 11 feed-fhroughs, tool encoding 0-99 |
| SWA-LSA5-T | 9948558 | E-module, 19-pin amphenol, 19-pin block, 7 feed--hroughs, tool encoding 0-999 |

## VA2 signal module



- The VA2 signal module enables signal transmission to the SWA and the control of the SWK.
- The electrical connection is established via an amphenol connector of the MS series. Customized connections are possible.
- The two ready-to-lock (R1 and R2) sensors and the proximity switches for "unlocked" and "locked" ( U and L ) can be connected directly to the VA2. The signals are transmitted to the robot controller via the amphenol connector.
- Up to 19 electric feed-throughs are available.
- Tool encoding: Up to 999 tools are available optionally.
- If a valve block is used, the switch signal can be tapped directly at the VA2.
- TSI monitoring is available optionally. The TSI ensures that the actuating valve can be actuated only in the change position in the magazine.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWK--VA2-T | 9948554 | E-module, 26-pin amphenol, 19-pin block, connection of L/U/R1/R2 sensors <br> With valve controller (compotible with SA2-T, SA3-T, SAA-T, and SA5-T) |
| SWA-L-SA2-T | 9948555 | E-module, 19-pin amphenol, 19-pin block, 19 feed-throughs |
| SWA-LSA3-T | 9948556 | E-module, 19-pin amphenol, 19-pin block, 15 feed-froughs, tool encoding 0-9 |
| SWA-L-SA4-T | 9948557 | E-module, 19-pin amphenol, 19-pin block, 11 feed-throughs, tool encoding 0-99 |
| SWA--SA5-T | 9948558 | E-module, 19-pin amphenol, 19-pin block, 7 feed-throughs, tool encoding 0-999 |

## How to order



SWS-210, SWS-310 and SWS-510
Proximity switch monitoring
G: Inductive proximity switch PNP 0 : No proximity switches Further variants on request
Optional modules
A selection of available modules can be found in the chapter "SWS-L" Options
Further variants on request
Note: A Jxx module, locking and unlocking adapters or a valve adapter must be mounted on surface A.
Signal modules are mounted on the Jxx module.
For combinations on the A-surface, the designation 'A' is a combination of the Jxx and the signal module.
SWK-21OB-JC2DD4-AA2-O-O-SG
Jxx: Locking and unlocking adapters or a valve adapter (only on surface 'A'):
Axx: Pneumatic module (anodized aluminum, not suitable for fluids)
Dxx: DeviceNet modules
Exx: Servo modules
Fxx: Fluid pneumatic modules (stainless steel, self-sealing)
Pxx: Power module for welding current
Sxx: Signal modules
Uxx: Stud welding modules
Vxx: Signal modules with valve controller
'0' option not used
Collar or step on the mounting surface
A: No collar (head side), no step (tool side) B: 80 mm distance/collar (only for 210)
C: 100 mm distance/collar (only for 210,310 )
D: 125 mm distance/collar (only for 310, 510)
E: 160 mm collar (only for 510)
Size
2: SWS-210 3: SWS-310 5: SWS-510
Page
K: Head (robot side) A: Adapter (tool side)

## Change • Quidk-dhange System • High Load Capacity



## Product description

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static moment.

## Technical data

| Designation | SWS-L 510 |  |  |
| :---: | :---: | :---: | :---: |
| Maximum payload | [kg] | 700 | A larger payload is possible with smaller moments |
| Static moment lood $M_{\text {K }}$ | [ Nm ] | 4680 |  |
| Static moment load $M_{z}$ | [ Nm ] | 3500 |  |
| Dynamic moment load $\mathrm{M}_{\mathrm{X}}$ | [ Nm ] | 14040 |  |
| Dynamic moment load $\mathrm{M}_{2}$ | [ Nm ] | 10500 |  |
| Locking force (at 6 bar) | [ N ] | 62300 | In the event of higher tensile forces the system "falls" into the self.locking position |
| Repeat accuracy | [mm] | 0.015 | Tested at 1 million cycles |
| Weight | [kg] | 28 | 19.3 kg head; 8.7 kg adapter |
| Min./max. distance on locking | [mm] | 2.5 | No.Touch-Locking ${ }^{\text {TIW }}$ technology allows the parts to be coupled without the head and the adapter touching |
| Maximum permissible XY offset | [mm] | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | $\left[^{\circ}\right]$ | $\pm 1$ | Maximum permissible angular offset around the $Z$ axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance ( $D$ in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment ( mx D)
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the quick-change system with a fluid module FH2 (SWK-510-DM-JB3-SA2-FH2-000-000) and a signal module SA2 (SWA-510-SA2-FH2-000-000)

A Locked air connection
B Unlocked air connection
(5) Through-bores for screw connection with screw (enclosed)
(24) Bolt pitch circle

## Mounting module options



The newly designed screw connection surfaces enable fast and secure mounting of air, electric, water and other modules.
The same mounting surface is used for the SWS-L 210, SWS-L 310 and the SWS-L 510.

## Change • Quidk-dhange System • High Load Capacity

## Locking and unlocking adapter



The change head (SWK) is supplied with pneumatic power by means of the locking and unlocking adapter. It is mounted on sufface A and contains two air connections, one for locking and one for unlocking the SWK. The system is controlled by a valve provided by the customer.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWKK--IB3-M | 9948549 | Locking and unlocking adapter |

If further modules are to be mounted on the mounting surface A , a spacer must be mounted on the tool side.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWA-20-1197 | 9948547 | Spacer |

## Valve adapter



As an alternative to the use of a locking and unlocking adapter, it is possible to use a valve adapter. A double- or single-acting magnetic valve is integrated in the valve adapter for control of the SWK. The system is controlled by electrical connectors on the valve adapter. The signals can be transmitted by cables provided by the customer or via an electric module.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWK-L-ID3-M | 9948551 | Single-ccting valve |
| SWK-L-JF3-M | 9948553 | Double-acting valve |

If further modules are to be mounted on the mounting surface A , a spacer must be mounted on the tool side.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWA-20-1197 | 9948547 | Spacer |

## SAX signal module



- The SAX signal module enables signal transmission to the SWA and the control of the SWK.
- The electrical connection is established via an amphenol connector of the MS series. Customized connections are possible.
- The two ready-to-lock ( $R 1$ and $R 2$ ) sensors and the proximity switches for "unlocked" and "locked" ( U and L ) can be connected directly to the SAX. The signals are transmitted to the robot controller via the amphenol connector.
- Up to 19 electric feed-throughs are available.
- Tool encoding: Up to 999 tools are available optionally.

| Designation | ID | Description |
| :---: | :---: | :---: |
| SWK-L-SA2-M | 9948563 | E-module, 26-pin amphenol, 19-pin block, connection of L/U/RI/R2 sensors Without valve controller (compatible with SA2-T, SA3-T, SA4-T, and SA5-T) |
| SWA-LSA2-T | 9948555 | E-module, 19-pin amphenol, 19-pin block, 19 feed-throughs |
| SWA-LSA3-T | 9948556 | E-module, 19-pin amphenol, 19-pin block, 15 feed-throughs, tool encoding 0.9 |
| SWA-LSA4-T | 9948557 | E-module, 19-pin amphenol, 19-pin block, 11 feed-throughs, tool encoding 0-99 |
| SWA-LSA5-T | 9948558 | E-module, 19-pin amphenol, 19-pin block, 7 feed-throughs, tool encoding 0-999 |

## Change • Quidk-dhange System • High Load Capacity

## VA2 signal module



- The VA2 signal module enables signal transmission to the SWA and the control of the SWK.
- The electrical connection is established via an amphenol connector of the MS series. Customized connections are possible.
- The two ready-to-lock (R1 and R2) sensors and the proximity switches for "unlocked" and "locked" ( U and L ) can be connected directly to the VA2. The signals are transmitted to the robot controller via the amphenol connector.
- Up to 19 electric feed-throughs are available.
- Tool encoding: Up to 999 tools are available optionally.
- If a valve block is used, the switch signal can be tapped directly at the VA2.
- TSI monitoring is available optionally. The TSI ensures that the actuating valve can be actuated only in the change position in the magazine.

| Designation | ID | Description |
| :--- | :--- | :--- |
| SWK-L-VA2-T | 9948554 | E-module, 26-pin amphenol, 19-pin block, connection of L/U/R1/R2 sensors <br>  <br>  <br> With valve controller (compotible with SA2-T, SA3-T, SAA-T, and SA5-T) |
| SWA-L-SA2-T | 9948555 | E-module, 19-pin amphenol, 19-pin block, 19 feed-fhroughs |
| SWAA-SA3-T | 9948556 | E-module, 19-pin amphenol, 19-pin block, 15 feed-froughs, tool encoding 0-9 |
| SWA-LSAA-T | 9948557 | E-module, 19-pin amphenol, 19-pin block, 11 feed-fhroughs, tool encoding 0-99 |
| SWA-L-SA5-T | 9948558 | E-module, 19-pin amphenol, 19-pin block, 7 feed-fhroughs, tool encoding 0-999 |

## How to order



SWS-210, SWS-310 and SWS-510
Proximity switch monitoring
G: Inductive proximity switch PNP 0 : No proximity switches Further variants on request
Optional modules
A selection of available modules can be found in the chapter "SWS-L" Options
Further variants on request
Note: A Jxx module, locking and unlocking adapters or a valve adapter must be mounted on surface A.
Signal modules are mounted on the Jxx module.
For combinations on the A-surface, the designation 'A' is a combination of the Jxx and the signal module.
SWK-210B-JC2DD4-AA2-0-0-SG
Jxx: Locking and unlocking adapters or a valve adapter (only on surface 'A'):
Axx: Pneumatic module (anodized aluminum, not suitable for fluids)
Dxx: DeviceNet modules
Exx: Servo modules
Fxx: Fluid pneumatic modules (stainless steel, self-sealing)
Pxx: Power module for welding current
Sxx: Signal modules
Uxx: Stud welding modules
Vxx: Signal modules with valve controller
'0' option not used
Collar or step on the mounting surface
A: No collar (head side), no step (tool side) B: 80 mm distance/collar (only for 210)
C: 100 mm distance/collar (only for 210, 310)
D: 125 mm distance/collar (only for 310, 510)
E: 160 mm collar (only for 510)
Size
2: SWS-210 3: SWS-310 5: SWS-510
Page
K: Head (robot side) A: Adapter (tool side)

## Options for SWS-L 210, 310 and 510

## Change • Quidk-change System • High Load Capadity

## Valve modules

| ID | Designation | Description |
| :---: | :---: | :---: |
| 9948548 | SWK-LIB2-M | Connecting plate for locking and unlocking suitable for SWK-L 210 |
| 9948549 | SWK-LIB3-M | Connecting plate for locking and unlocking suitable for SWK-L 310 and SWK-L 510 |
| 9948550 | SWK-LID2-M | Valve connection plate for SWK-L 210 with integrated valve. Valve with spring return. Only one air connection is required for actuating the changeover contact. <br> The valve is controlled via a VA2 or VB2 module that is mounted on the JD2. |
| 9948551 | SWK--ID3-M | Valve connection plate for SWK-L 310 and SWK-L 510 with integrated valve. Valve with spring return. Only one air connection is required for actuating the changeover contact. <br> The valve is controlled via a VA2 or VB2 module that is mounted on the JD3. |
| 9948552 | SWK-LIF2-M | Valve connection plate for SWK-L 210 with integrated valve. Only one air connection is required for actuating the changeover contact. The valve is controlled via a VA2 or VB2 module that is mounted on the JD2. |
| 9948553 | SWK-L.JF3-M | Valve connection plate for SWK-L 310 and SWKKL 510 with integrated valve. Valve with spring return. Only one air connection is required for actuating the changeover contact. <br> The valve is controlled via a VA2 or VB2 module that is mounted on the JD3. |
| 9948547 | SWA-20-1192 | SWA 210/310/510 spacer plate |

## Signal modules

| ID | Designation | Description |
| :---: | :---: | :---: |
| 9948554 | SWK-LVA2-M | - The signal module enables the activation and control of the SWS. <br> The module is mounted on the SWK and is suitable for models SWS-L 210; SWS-L 310 and SWS-L 510. <br> - Pins are splash-proof and protected against accidental contact <br> - Up to 19 signals available for use by customer <br> - An additional switch (TSI) in the VA2-M module prevents accidental uncoupling of the system by the controller. <br> The TSI is actuated when the tool is placed in the magazine. Only then the valve is released so that it can be actuated. <br> - Ready-to-Lock ( $R 1$ and $R 2$ ), locking and unlocking sensors can be monitored via the VA2-M module. <br> On the tool side, the module can be combined with the SA2-T, SA3-T, SA4-T or SA5-T. |
| 9948563 | SWK-LSA2-M | - The module is mounted on the SWK and is suitable for models SWS-L 210; SWS-L 310 and SWS-L 510. <br> - Pins are splash-proof and protected against accidental contact <br> - Up to 19 signals available for use by customer <br> - Ready-to-Lock ( $R 1$ and R2), locking and unlocking sensors can be monitored via the VA2-M module. On the tool side, the module can be combined with the SA2-T, SA3-T, SA4-T or SA5-T. |
| 9948559 | SWK-LVB2-M | - The signal module enables the activation and control of the SWS. <br> The module is mounted on the SWK and is suitable for models SWS-L 210; SWS-L 310 and SWS-L 510 . <br> - Pins are splash-proof and protected against accidental contact <br> - Up to 19 signals available for use by customer <br> - Ready-to-Lock (R1 and R2), locking and unlocking sensors can be monitored via the VA2-M module. <br> On the tool side, the module can be combined with the SA2-T, SA3-T, SA4-T or SA5-T or VB2-T, VB3-T or VB4-T. |
| 9948555 | SWA-LSA2-T | SWA signal module, 19 pin can be combined with VA2-M; VB2-M or SA2-M |
| 9948556 | SWA-LSA3-T | SWA signol module, 19/15 pin can be combined with VA2-M; VB2-M or SA2-M. Module with integrated tool encoding for 9 tools. 15 pins are available for use by customer. |
| 9948557 | SWA-L-SA4-T | SWA signal module, $19 / 11$ pin can be combined with VA2-M; VB2-M or SA2-M. <br> Module with integrated tool encoding for 99 tools. 11 pins are available for use by customer. |
| 9948558 | SWA-L-SA5-T | SWA signal module, 19/7 pin can be combined with VA2-M; VB2-M or SA2-M. <br> Module with integrated tool encoding for 999 tools. 7 pins are available for use by customer. |
| 9948560 | SWA-LVB2-T | SWA signal module, 19 pin can be combined with VB2-M. <br> - An additional switch (TSI) in the VB2-T module prevents accidental uncoupling of the system by the controller. The TSI is actuated when the tool is placed in the magazine. Only then the valve is released so that it can be accuated. |
| 9948561 | SWA-LVB3-T | SWA signal module, 19 pin can be combined with VB2-M. <br> - An additional switch (TSI) in the VB2-T module prevents accidental uncoupling of the system by the controller. The TSI is actuated when the tool is placed in the magazine. Only then the valve is released so that it can be actuated. <br> Module with integrated tool encoding for 9 tools. |
| 9948562 | SWA-LVB4-T | SWA signal module, 19 pin can be combined with VB2-M. <br> - An additional switch (TSI) in the VB2-T module prevents accidental uncoupling of the system by the controller. The TSI is actuated when the tool is placed in the magazine. Only then the valve is released so that it can be actuated. <br> Module with integrated tool encoding for 99 tools. |

## Options for SWS-L 210, 310 and 510

Change • Quidk-dhange System • High Load Capadity

Pneumatic modules

| ID | Designation | Description |
| :--- | :--- | :--- |
| 9948564 | SWK-LAF2-M | SWK pneumatic module (8) $3 / 8^{\prime \prime} G$ for 6.9 bar maximum |
| 9948565 | SWA-L-AFL-T | SWA pneumatic module (8) $3 / 8^{\prime \prime} G$ for 6.9 bar maximum |
| 9948566 | SWK-LAG2-M | SWK pneumatic module with (4) $3 / 8^{\prime \prime} G$ for 6.9 bar maximum and (2) $3 / 4^{\prime \prime} G$ vacuum |
| 9948567 | SWA-L-AG2-T | SWA pneumatic module with (4) $3 / 8^{\prime \prime} \mathrm{G}$ for 6.9 bar maximum and (2) $3 / 5^{\prime \prime} G$ vacuum |
| 9948568 | SWK-L-AH2-M | SWK pneumatic module (8) $3 / 8^{\prime \prime} G$ self-sealing |

(8) Self-sealing on head side
6.9 bar maximum, only compressed air
$9948569 \quad$ SWA-L-AH2-T SWA pneumatic module (8) 3/8"G
(4) Self-sealing on the adapter side
6.9 bar maximum, only compressed air

|  |  | 6.9 bar maximum, only compressed air |
| :--- | :--- | :--- |
| 9948570 | SWA-L-AH3-T | SWA pneumatic module (8) $3 / 8$ " $G$ |
|  |  | 6.9 bar maximum, only compressed air |

$9948571 \quad$ SWA-L-AH4-T SWA pneumatic module (8) 3/8"G
(8) Self-sealing on the adapter side
6.9 bar maximum, only compressed air

| 9948572 | SWK-LAK2-M | SWK pneumatic module (10) 1/4" G self-sealing for 6.9 bar maximum |
| :---: | :---: | :---: |
| 9948573 | SWA-AK2-T | SWA pneumatic module (10) 1/4"G self-sealing for 6.9 har maximum |
| 9948574 | SWK--AL2-M | SWK pneumatic module (2) 3/4' 6 self-sealing for 6.9 bar maximum |
| 9948575 | SWA--AL2-T | SWA pneumatic module (2) 3/4" 6 selfsealing for 6.9 bar maximum |
| 9948576 | SWK-LAM2-M | SWK pneumatic module (2) 1/2" 6 selfsealing for 6.9 bar maximum |
| 9948577 | SWA--AM2-T | SWA pneumatic module (2) 1/2" 6 selfsealing for 6.9 bar maximum |

## Fluid modules

| ID | Designation | Description |
| :---: | :---: | :---: |
| 9948578 | SWK.L-FC2-M | SWK pneumatic module |
|  |  | (8) $3 / 8$ " $G$ self-sealing |
|  |  | (8) Self-sealing on head side |
|  |  | 6.9 bar maximum |
| 9948579 | SWA-LFC2-I | SWA pneumatic module |
|  |  | (8) $3 / 8$ " G |
|  |  | (4) Self-sealing on the adapter side |
|  |  | 6.9 bar maximum |
| 9948580 | SWA-LFC3-I | SWK pneumatic module |
|  |  | (8) $3 / 8$ " $G$ |
|  |  | 6.9 bar maximum |
| 9948581 | SWA-LFC4-T | SWK pneumatic module |
|  |  | (8) $3 / 8$ " G |
|  |  | (8) Self-sealing on the adapter side |
|  |  | 6.9 bar maximum. |

## Hydraulic modules

| ID | Designation | Description |
| :--- | :--- | :--- |
| 9948582 | SWK-L-HB2-M | Hydraulic module with (2) $3 / 8^{\prime \prime}$ and <br> (1) GI/4" for 158 bar |
| 9948583 | SWA-L-HB2-T | Hydraulic module with (2) $3 / 8^{\prime \prime}$ and <br> (1) GI/4" for 158 bar |
| 9948584 | SWKK-L-HB3-M | Hydraulic module with (2) G3/8" for 158 bar |
| 9948585 | SWA--HB3-T | Hydraulic module with (2) G3/8" for 158 bar |

## Change • Quidk-dhange System • High Load Capacity



## Product description

## Excellent weight-force ratio <br> No-Touch-Locking ${ }^{\text {TM }}$

Locking without touching. Ensures that the SWS is securely locked even when the SWK and SWA do not touch. A maximum distance of 2.5 mm is possible.
Patented self-locking locking system
A larger piston diameter and the OD locking mechanism increase the permissible moment load. Steel parts are made of stainless Rc 58.
Integrated lock monitoring
for locking and unlocking
Connection option for DeviceNet modules

## Adapter plates

available for other flange patterns

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 12 -fold static static moment.

## Technical data

| Designation |  | SWS.L 602 |  |
| :--- | :--- | ---: | :--- |
| Maximum payload | $[\mathrm{kg}]$ | 1130 | A larger payload is possible with smaller moments |
| Locking force (at 6 bar) | $[\mathrm{N}]$ | 93000 | In the event of higher tensile forces the system "falls" into the self-locking position |
| Repeat accuracy | $[\mathrm{mm}]$ | 0.015 | Tested at 1 million cycles |
| Weight | $[\mathrm{kg}]$ | 58.1 |  |
| Min./max. distance on locking | $[\mathrm{mm}]$ | 2.5 | No-Touch-LockingTi/t technology allows the parts to be coupled without the head and the adapter <br> toucching |
| Maximum permissible XY offset | $[\mathrm{mm}]$ | $\pm 2$ | Maximum permissible XY offset when locking |
| Maximum permissible angular offset | $\left[{ }^{\circ}\right]$ | $\pm 1$ | Maximum permissible angular offset around the Z axis when locking |

## Information on moment load

Selecting the correct quick-change system depends on the moment load which the system is subject to.
Proceed as follows to calculate the maximum moments.

- Determine the center of gravity and the weight ( m in Newtons) of your heaviest tool (gripper, adapter plate and tool)
- Determine the distance ( $D$ in meters) from the center of gravity to the underside of the quick-change adapter (SWA)
- Calculate the static moment (mxD)
- Select a quick-change system with a permissible moment that is equal to or greater than the moment you have calculated

Robot movements can also have an effect on the change system. Dynamic moments can come into effect which are 2-3 times greater than the static moments you have calculated. The SWS quick-change systems are designed for handling dynamic moments which can be up to three times greater than the static moments.

## Main views



The drawing shows the basic version of the quick-change system without dimensional consideration of the options described below.

## SWS Options

## Tool Changing • Quid-change System

## Electric modules

| Name | No. of pins | Elec. data | Cable connector type | Comment | Fits SWS size |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A15 | 15 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Sub-D connector |  | 11 |
| B15 | 15 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Sub-D connector |  | 5 |
| E10-005 | 10 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Solder contacts |  | 5 |
| E10-010 | 10 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Solder contacts |  | 11 |
| E20 | 20 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Solder contacts |  | 11 |
| E2A | 20 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Solder contacts |  | 5 |
| E3A | 30 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Solder contacts |  | 5 |
| G19 | 19 | $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {a }}$ | Amphenol PT series <br> Bayonet catch | Plug connection can be pivoted to 5 positions | 40, 41, 71, 100, 110, 150, 300 |
| 626 | 26 | $3 \mathrm{~A} / 250 \mathrm{VAC*}$ | Amphenol PT series <br> Bayonet catch | Plug connection can be pivoted to 5 positions | 40, 41, 71, 100, 110, 150, 300 |
| K19 | 19 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Amphenol PT series <br> Bayonet catch |  | 20, 21, 60 |
| K26 | 26 | $3 \mathrm{~A} / 50 \mathrm{~V}$ | Amphenol PT series Bayonet catch |  | 20, 21, 60 |
| KM14 | 14 | $\begin{aligned} & 12 \times 5 \mathrm{~A} / 250 \mathrm{VA}{ }^{\star} \\ & 2 \times 13 \mathrm{~A} / 250 \mathrm{VA}{ }^{\star} \end{aligned}$ | Amphenol PT series Bayonet catch |  | 20,21,60 |
| MT8 | 8 | $20 \mathrm{~A} / 500 \mathrm{VAC}{ }^{* *}$ | Amphenol MS series Threaded |  | 40, 41, 71, 100, 110, 150,300 |
| MT14 | 14 | $13 \mathrm{~A} / 500 \mathrm{VAC**}$ | Amphenol MS series Threaded |  | 40, 41, 71, 100, 110, 150, 300 |
| R19 | 19 | $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series <br> Bayonet catch |  | 40, 41, 71, 100, 110, 150, 300 |
| R14 | 14 | $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series Bayonet catch | Tool coding for 9 tools Fits R19 (adapter side only) | 40, 41, 71, 100, 110, 150, 300 |
| R10 | 10 | $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series Bayonet catch | Tool coding for 99 tools Fits R19 (adapter side only) | 40, 41, 71, 100, 110, 150,300 |
| R26 | 26 | $3 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series <br> Bayonet catch |  | 40, 41, 71, 100, 110, 150,300 |
| R21 | 21 | $3 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series Bayonet catch | Tool coding for 9 tools Fits R26 (adapter side only) | 40, 41, 71, 100, 110, 150,300 |
| R17 | 17 | $3 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series <br> Bayonet catch | Tool coding for 99 tools Fits R26 (adapter side only) | 40, 41, 71, 100, 110, 150,300 |
| R32 | 32 | $3 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series Bayonet catch |  | 40, 41, 71, 100, 110, 150, 300 |
| S19 | 19 | $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series Bayonet catch |  | 40, 41, 71, 100, 110, 150,300 |
| S14 | 14 | $5 \mathrm{~A} / 250 \mathrm{VAC*}$ | Amphenol PT series <br> Bayonet catch | Tool coding for 9 tools Fits S19 (adapter side only) | 40, 41, 71, 100, 110, 150, 300 |
| S26 | 26 | $3 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series Bayonet catch |  | 40, 41, 71, 100, 110, 150,300 |
| S21 | 21 | $3 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol PT series <br> Bayonet catch | Tool coding for 9 tools Fits S26 (adapter side only) | 40, 41, 71, 100, 110, 150,300 |
| T19 | 19 | $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol MS series Threaded |  | 40, 41, 71, 100, 110, 150,300 |
| T14 | 14 | $5 \mathrm{~A} / 250 \mathrm{VAC}{ }^{\text {* }}$ | Amphenol MS series Threaded | Tool coding for 9 tools Fits $\mathrm{T19}$ (adapter side only) | 40, 41, 71, 100, 110, 150,300 |
| T10 | 10 | $5 \mathrm{~A} / 250 \mathrm{VAC*}$ | Amphenol MS series Threaded | Tool coding for 99 tools Fits $\mathrm{T19}$ (adapter side only) | 40, 41, 71, 100, 110, 150, 300 |

[^8]
## Sectional diagram of the G19 module


(3) Contact pins
spring loaded
(4) Splash protection
(5) Leading pin
for connection to earth
(6) Flange socket
for cable connectors

## Pneumatic and fluid modules

| Name | No. of feed-throughs | Size | Pressure | Media | Fits SWS size |
| :--- | :--- | :--- | :--- | :--- | :--- |
| V34 | 1 | $\mathrm{G} 3 / 4^{\prime \prime}$ |  | Vacuum only | $40,41,71,110,150,300$ |
| P05 | 10 | M5 | 7 bar | Pneumatic and vacuum | $40,41,71,110,150,300$ |
| P14 | 2 | $\mathrm{G} 1 / 4^{\prime \prime}$ | 7 bar | Pneumatic and vacuum | $40,41,71,110,150,300$ |
| P186 | 6 | $\mathrm{G} / 8^{\prime \prime}$ | 7 bar | Pneumatic and vacuum | $40,41,71,110,150,300$ |
| P18 | 4 | $\mathrm{G} / 8^{\prime \prime}$ | 7 bar | Pneumatic and vacuum | $40,41,71,110,150,300$ |
| P238 | 2 | $\mathrm{G} 3 / 8^{\prime \prime}$ | 7 bar | Pneumatic and vacuum | $40,41,71,110,150,300$ |
| P38A | 4 | $\mathrm{G} 3 / 8^{\prime \prime}$ axial | 7 bar | Pneumatic and vacuum | $40,41,71,110,150,300$ |
| P38-E | 4 | $\mathrm{G} 3 / 8^{\prime \prime}$ | 7 bar | Pneumatic and vacuum | 110,150 |

## Al5 for SWS-0 11

Tool Changing • Quidk-change System


# Product description 

Sub-D connector
15-pin
3 Amp/ 50 VAC per pin
Spring-loaded, gold-coated contact pins

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| A15 head | 9936357 | SWK | 15-pin, 3 Amp/50 VAC E option with Sub-D connector |
| A15 adapter | 9936356 | SWA | 15-pin, 3 Amp/50 VAC E option with Sub-D connector |

(i) ID only for replacement orders and separate orders.

## Suitable cable connettors



| Straight |  |  |
| :--- | ---: | ---: |
| Cable connectors for | ID | Designation |
| A15 head | 0301264 | KAS-A15-K |
| A15 adapter | 0301265 | KAS-A15-A |

The cable connector establishes the connection between the A15 module and the cable.

## Al5 for SWS-0 11

## Main views



## B 15 for SWS-005

Tool Changing • Quidk-hange System


# Product description 

Sub-D connector
15-pin
3 Amp/ 50 VAC per pin
Spring-loaded, gold-coated contact pins

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| B15 head | 9937326 | SWK | 15-pin, 3 Amp/50 VAC E option with high-destiny Sub-D connector |
| B15 adapter | 9937327 | SWA | 15-pin, 3 Amp/50 VAC E option with high-destiny Sub-D connector |

(i) ID only for replacement orders and separate orders

## Suitable cable connectors



|  | Straight |  |
| :--- | ---: | ---: |
| Cable connectors for | ID | Designation |
| B15 head | 0301264 | KAS-A15-K |
| B15 adapter | 0301265 | KAS-A15-A |

The cable connector establishes the connection between the B15 module and the cable.

## B15 for SWS-005

## Main views



[^9]
## E2A for SWS-005

Tool Changing • Quidk-change System
Product description


20 -pin
3 Amp/ 50 VAC per pin
Gold-coated contact pins, spring-loaded on the robot side

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| E2A head | 9941289 | SWK | 20-pin 3 Amp/50 VAC E option with solder contacts |
| E2A adapter | 9941290 | SWA | 20-pin, 3 Amp/50 VAC E option with solder contacts |

(i) ID only for replacement orders and separate orders

## E2A for SWS-005

## Main views



## E3A for SWS-005

Tool Changing • Quidk-change System


## Product description

30-pin
3 Amp/ 50 VAC per pin
Gold-coated contact pins, spring-loaded on the robot side

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| E3A head | 9941631 | SWK | 30-pin 3 Amp/50 VAC E option with solder contacts |
| E3A adapter | 9941632 | SWA | 30 -pin, 3 Amp/50 VAC option with solder contacts |

(i) ID only for replacement orders and separate orders

## Main views



## E 10-005 for SWS-005

Tool Changing • Quidk-change System


## Product description

10-pin
3 Amp/50 VAC per pin
Gold-coated contact pins, spring-loaded on the robot side

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| E10-005 head | 9935799 | SWK | 10 -pin, 3 Amp/50 VAC E option with solder contacts |
| E10-005 adapter | 9935800 | SWA | 10 -pin, 3 Amp/50 VAC option with solder contacts |

(i) ID only for replacement orders and separate orders

## E10-005 for SWS-005

Tool Changing • Quidk-change System

## Main views


(13) Adapter side

## E10-010 for SWS-0 11

Tool Changing • Quidk-change System

## Product description



10-pin
3 Amp/ 50 VAC per pin
Gold-coated contact pins, spring-loaded
on the robot side

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| E10-010 head | 9935801 | SWK | 10 -pin, 3 Amp/50 VAC E option with solder contacts |
| E10-010 adapter | 9935802 | SWA | 10 -pin, 3 Amp/50 VAC option with solder contacts |

(i) ID only for replacement orders and separate orders

## E10-010 for SWS-0 11

Tool Changing • Quidk-change System

## Main views


(13) Adapter side

# Product description 



20 -pin
3 Amp/ 50 VAC per pin
Gold-coated contact pins, spring-loaded on the robot side

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| E20 head | 9936525 | SWK | 20-pin, 3 Amp/50 VAC E option with solder contacts |
| E20 adapter | 9936526 | SWA | 20 -pin, 3 Amp/50 VAC E option with solder contacts |

(i) ID only for replacement orders and separate orders

## Main views


(13) Adapter side

## G19 for SWS

## Tool Changing • Quidk-change System



## Product description

Pivoted connector
can be fixed into 5 positions
19-pin
5 Amp/250 VAC* per pin
MS miniature quick-change connector
Contact pins protected against accidental contact
Splash-proof


## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| G19 head | 9940649 | SWK | 19 -pin $/ 5 \mathrm{~A} / 250 \mathrm{VAC}$ |
| G19 adapter | 9940650 | SWA | 19 -pin $/ 5 \mathrm{~A} / 250 \mathrm{VAC}$ |

* 250 VAC grounding done by customer
(i) ID only for replacement orders and separate orders


## Suitable cable connettors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| G19 head | 0301240 | KAS-19B-K- 0 | 0301248 | KAS-19B-K-90 |
| G19 adapter | 0301241 | KAS-19B-A-0 | 0301249 | KASS-19B-A-90 |

The cable connector establishes the connection between the G19 module and the cable.
Ready-made cable connectors with 2, 3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | ---: | ---: |
| $S W S-040$ | $A ; B$ | $N_{0}$ |
| $S W S-041$ | $A$ | $N_{0}$ |
| $S W S-071$ | $A ; B$ | $N_{0}$ |
| $S W S-110$ | $A ; B$ | $N_{0}$ |
| $S W S-150$ | $A ; B$ | $N_{0}$ |
| $S W S-300$ | $A ; B$ | $N_{0}$ |

## G19 for SWS

## Main views G 19 head and G19 adapter



## G19 pin assignment


(14) Male connector
(15) Female connector

| Pin out |  |
| :---: | :---: |
| G19-T | G19-M |
| PT02E-14-19S | PT02E-14-19P |
| Female connector | Male connector |
| A <----- | ----- < A |
| B<----- | ----> - |
| C<---- | ----- < |
| D<----- | ----- $<$ D |
| E<----- | ----- $<$ E |
| F<----- | ----- $<$ F |
| J<----- | ----- < J |
| K<----- | ----- < K |
| L<---- | ---- < L |
| M < - - - | ----> ${ }^{\text {- }}$ |
| $N<---$ | ---- < N |
| $\mathrm{P}<--$ | ----- $<$ P |
| $R<-$--- | ----- < R |
| S<----- | ----- < S |
| T<----- | ----- < T |
| U<----- | ----- < U |
| $V<----$ | ----- < V |

## G26 for SWS

## Tool Changing • Quidk-change System



## Product description

Pivoted connector
can be fixed into 5 positions
26-pin
5 Amp/250 VAC* per pin
MS miniature quick-change connector
Contact pins protected against accidental contact
Splash-proof


## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| G26 head | 9941560 | SWK | 26 -pin $/ 3 \mathrm{~A} / 250 \mathrm{VAC}$ |
| G26 adapter | 9941561 | SWA | 26 -pin $/ 3 \mathrm{~A} / 250 \mathrm{VAC}$ |

* 250 VAC grounding done by customer
(i) ID only for replacement orders and separate orders


## Suitable cable connectors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| G26 head | 0301250 | KAS-26B-K- | 0301252 | KAS-26B-K-90 |
| G26 adapter | 0301251 | KAS-26B-A- 0 | 0301253 | KAS-26B-A-90 |

The cable connector establishes the connection between the G26 module and the cable.
Ready-made cable connectors with 2, 3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | ---: | ---: |
| $S W S-040$ | $A ; B$ | $N_{0}$ |
| $S W S-041$ | $A$ | $N_{0}$ |
| $S W S-071$ | $A ; B$ | $N_{0}$ |
| $S W S-110$ | $A ; B$ | $N_{0}$ |
| $S W S-150$ | $A ; B$ | $N_{0}$ |
| $S W S-300$ | $A ; B$ | $N_{0}$ |

## G26 for SWS

## Main views



[^10]
## K 19 for SWS-020; SWS-02 1; SWS-060

Tool Changing • Quidk-change System


## Product description

19-pin
3 Amp/50 VAC per pin
MS miniature quick-change connector
Contact pins protected against accidental
contact
Splash-proof

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| K19 head | 9937328 | SWK | 19-pin, 3 Amp/50 VAC E option with miniature quick-change connector |
| K19 adapter | 9937329 | SWA | 19 -pin, 3 Amp/50 VAC E option with miniature quick-change connector |

(i) ID only for replacement orders and separate orders

## Suitable cable connectors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| K19 head | 0301240 | KAS-19B-K-0 | 0301248 | KAS-19B-K-90 |
| K19 adapter | 0301241 | KAS-19B-A-0 | 0301249 | KAS-19B-A-90 |

The cable connector establishes the connection between the K19 module and the cable.
Ready-made cable connectors with 2,3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | ---: | ---: |
| SWS-020 | A; B | No |
| SWS-021 | A | No |
| SWS-060 | A | No |

## K 19 for SWS-020; SWS-02 1; SWS-060

## Main views K 19 head and K 19 adapter



## K26 for SWS-020; SWS-02 1; SWS-060

## Tool Changing • Quidk-change System



## Product description

26-pin
3 Amp/50 VAC per pin
MS miniature quick-change connector
Contact pins protected against accidental
contact
Splash-proof

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| K26 head | 9937798 | SWK | 26-pin, 3 Amp/50 VAC E option with miniature quick-change connector |
| K26 adapter | 9937799 | SWA | 26 -pin, 3 Amp/50 VAC E option with miniature quick-change connector |

(i) ID only for replacement orders and separate orders

## Suitable cable connettors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| K26 head | 0301250 | KAS-26B-K- | 0301252 | KAS-26B-K-90 |
| K26 adapter | 0301251 | KAS-26B-A-O | 0301253 | KAS-26B-A-90 |

The cable connector establishes the connection between the K26 module and the cable.
Ready-made cable connectors with 2, 3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | ---: | ---: |
| SWS.020 | A; B | $N_{0}$ |
| SWS-021 | A | $N_{0}$ |
| SWSS060 | A | $N_{0}$ |

## K26 for SWS-020; SWS-02 1; SWS-060

## Main views K26 head and K26 adapter



## MT8 for SWS

Tool Changing • Quidk-change System


## Product description

8-pin 20 A/500 VAC**
MS threaded plog
Spring-loaded contact pins
Splash-proof

## Technical data

| Designation | ID | Fits | Description |  |
| :--- | :--- | :--- | :--- | :--- |
| MT8 head | 9937157 | SWK | 20 Amp $/ 500$ VAC** per pin E option | Plug right |
| MT8L head | 9949318 | SWK | $20 \mathrm{Amp} / 50 \mathrm{VAC*}$ pro Pin E-Option | Plug left |
| MT8 adapter | 9937158 | SWA | $20 \mathrm{Amp} / 500 \mathrm{VAC*}$ per pin E option | Plug right |
| MT8L adapter | 9949317 | SWA | $20 \mathrm{Amp} / 50 \mathrm{VAC*}$ pro Pin E-Option | Plug left |

** 500 VAC grounding done by customer
(i) ID only for replacement orders and separate orders

## Suitable cable connectors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| MT8 head | 0301268 | KAS-08G-K-0 | 0301270 | KAS-08G-K-90 |
| MT8 adapter | 0301269 | KAS-08G-A-0 | 0301271 | KAS-08G-A-90 |

The cable connector establishes the connection between the MT8 module and the cable.
Ready-made cable connectors with 2, 3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | :---: | :---: |
| SWS-040 | A; B | $N_{0}$ |
| SWS-041 | $A$ | $N_{0}$ |
| SWS-071 | A; B | $N_{0}$ |
| SWS-110 | A; B | $N_{0}$ |
| SWS-150 | A; B | $N_{0}$ |
| SWS-300 | A; B | $N_{0}$ |

## MT8 for SWS

## Main views MT8 head and MT8 adapter


(1) On option with a sinistral cable exit.

> (12) Head side
> (13) Adapter side
> (14) Male connector
> (15) Female connector


## Product description

14 -pin $13 \mathrm{~A} / 500 \mathrm{VAC}^{* *}$
MS threaded plog
Spring-loaded contact pins
Splash-proof

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| MT14 head | 9938527 | SWK | 13 Amp $/ 500$ VAC** per pin E option |
| MT14 adapter | 9938528 | SWA | 13 Amp/500 VA ${ }^{\circ \star}$ per pin E option |

** 500 VAC grounding done by customer
(i) ID only for replacement orders and separate orders

## Suitable cable connectors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| MT14 head | 0301242 | KAS-19G-K-0 | 0301254 | KAS-19G-K-90 |
| MT14 adapter | 0301243 | KAS-19G-A-0 | 0301255 | KAS-19G-A-90 |

The cable connector establishes the connection between the MT14 module and the cable.
Ready-made cable connectors with 2, 3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | :---: | :---: |
| SWS-040 | A; B | $N_{0}$ |
| SWS-041 | $A$ | $N_{0}$ |
| SWS-071 | A; B | $N_{0}$ |
| SWS-110 | A; B | $N_{0}$ |
| SWS-150 | A; B | $N_{0}$ |
| SWS-300 | A; B | $N_{0}$ |

## MT14 for SWS

## Main views MT14 head and MT14 adapter



[^11]
## Tool Changing • Quid-change System



## Product description

19-pin
5 Amp/250 VAC* per pin
MS miniature quick-change connector
Contact pins protected against accidental
contact
With tool coding as an option
Splash-proof

## Technical data

| Designation | ID | Fits | Description |
| :---: | :---: | :---: | :---: |
| R19 head | 9935815 | SWK | 19-pin, 5 Amp/250 VAC* E option with minioture quick-change connector |
| R19W head | 9942041 | SWK | Connection possibility for proximity switches for control of piston stroke (to be used for SWK-100 R19R) |
| R19R head | 9942391 | SWK | Connection possibility for proximity switches for control of piston stroke (SWK-110) |
| R19 adapter | 9935816 | SWA | 19-pin, $5 \mathrm{Amp} / 250 \mathrm{VAC}$ E option with minioture quick-change connector |
| R14 adapter | 9935100 | SWA | Tool coding 0.9 tools, $5 \mathrm{Amp} / 250 \mathrm{VaC}$ <br> 14-pin can be used by customer - see drowing, suitable for R19 head |
| R10 adapter | 9941385 | SWA | Tool coding 0.99 tools, 5 Amp/250 VAC* <br> 10 -pin can be used by customer - see drawing, suitable for R19 head |

* 250 VAC grounding done by customer
(i) ID only for replacement orders and separate orders


## Suitable cable connectors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| R19 head | 0301240 | KAS-19B-K- | 0301248 | KAS-19B-K-90 |
| R19; R14; R10 adapter | 0301241 | KAS-19B-A-O | 0301249 | KAS-19B-A-90 |

The cable connector establishes the connection between the R19 module and the cable.
Ready-made cable connectors with 2,3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | :---: | :---: |
| SWS-040 | A; B | $N_{0}$ |
| SWS-041 | $A$ | $N_{0}$ |
| SWS-071 | A; B | $N_{0}$ |
| SWS-110 | A; B | $N_{0}$ |
| SWS-150 | A; B | $N_{0}$ |
| SWS-300 | A; B | $N_{0}$ |

## R19 for SWS

## Main views R19 head and R19 adapter



## S modules



As opposed to the $R$ modules, the $S$ modules have the connector socket opposite the contact pins.
The following models are available: S19 and S14 (tool coding) suitable for R19
(12) Head side
(13) Adapter side
(14) Male connector
(15) Female connector

T modules


The T modules and R modules differ in terms of the connector used. $R$ modules have a bayonet connection and T modules have a thread. The following models are available: T19, T14 and T10 (tool coding) suitable for R19

## R19 for SWS

Tool Changing • Quidk-change System

## Main views R19 head and R14/R10 adapter


(12) Head side
(13) Adapter side

## R19 for SWS

## R14 plug connection


(12) Head side
(13) Adapter side

| Pin out |  |
| :---: | :---: |
| R19 head side | R14 adapter side |
| PT02E-14-19P | PT02E-14-19S |
| Male connector | Female connector |
| A - - | -------- A |
| B - - | ------- - ${ }^{\text {- }}$ |
| C--- | ------ - - |
| D ---- | ------ - D |
| E -- | ------E |
| F--- | ------ - F |
| G - - - | -------G |
| H --- | ------ H |
| J-- | ---- - |
| K | ------ - K |
|  | ------ L |
| M - | ------ M |
| N----- | ------ N |
| P----------------->> |  |
| R ---- |  |
| S ---- |  |
| T ------ |  |
| U------------>> -----' |  |
| V ---- | ------- - V |

Connector pin assignment R19W head/R14 adapter


## R10 plug connection



| Pin out |  |  |
| :---: | :---: | :---: |
| R19 head side | R10 adapter side PT02E-14-19S |  |
| PT02E-14-19P |  |  |
| Male connector | Female connector |  |
| A - - |  | - - - A |
| B --- |  | --- - B |
| C-- |  | -- - C |
| D | - | -- - D |
| E | - | -- - - |
| F --- | -- | -- - F |
| G --- |  | ----G |
| H --- |  | -- - - H |
| J----- |  | -- - - J |
| K----- |  |  |
|  | 钲 |  |
| N ---- |  |  |
| P ---- |  |  |
| R | 年 | ! |
| S ---- | $\stackrel{\text { N }}{ }$ |  |
| T ----- |  |  |
| U----- | --- | - |
| V -- | --- | --- - V |

Connector pin assignment R19W head/R19 adapter

|  | Pin out |  |
| :---: | :---: | :---: |
|  | R19W-M head side | R19-T adapter side |
|  | R19R-M |  |
|  | Pin | Socket |
|  | A ----- | - - A |
|  | B ----- | - - B |
| Unlock signol (black) | C --- | -- C No connect |
| 10-30 VDC (brown) | D ---- | -- D Noconnect |
|  | E ------ | - - E |
|  | F ------ | - - F |
|  | G ----- | - - G |
| O VDC (blue) | H | - - H No connect |
|  | J------ | - - J |
| Lock signal (black) | K | - - K No connect |
|  | L | - - L |
|  | M - | - - M |
|  | N ----- | - - N |
|  | P ----- | - - P |
|  | R ----- | - - R |
|  | S ------ | - - S |
|  | T ------ | - - T |
|  | U ------ | - - U |
|  | V ------ |  |
|  |  |  |



# Product description 

26-pin
3 Amp/250 VAC* per pin
MS miniature quick-change connector
Contact pins protected against accidental
contact
With tool coding as an option
Splash-proof

## Technical data

| Designation | ID | Fits | Description |
| :---: | :---: | :---: | :---: |
| R26 head | 9935819 | SWK | 26-pin, $3 \mathrm{Amp} / 250 \mathrm{VAC}$ * option with miniature quick-change connector |
| R26 adapter | 9935820 | SWA | 26 -pin, $3 \mathrm{Amp} / 250 \mathrm{VAC}$ E option with miniature quick-change connector |
| R21 adapter | 9799841 | SWA | Tool coding 0.9 tools, $3 \mathrm{Amp} / 250 \mathrm{VAC}$ 21-pin can be used by customer - see drawing, suitable for R26 head |
| R17 adapter | 9941386 | SWA | Tool coding 0.99 tools, 3 Amp/250 VAC* 17-pin can be used by customer - see drawing, suitable for R26 head |

* 250 vaC grounding done by customer
(i) ID only for replacement orders and separate orders


## Suitable cable connectors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| R26 head | 0301250 | KAS-26B-K- 0 | 0301252 | KAS-26B-K-90 |
| R26; R21; R17 adapter | 0301251 | KAS-26B-A-0 | 0301253 | KAS-26B-A-90 |

The cable connector establishes the connection between the R26 module and the cable.
Ready-made cable connectors with 2, 3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | :---: | :---: |
| SWS-040 | A; B | $N_{0}$ |
| SWS-041 | $A$ | $N_{0}$ |
| SWS-071 | A; B | $N_{0}$ |
| SWS-110 | A; B | $N_{0}$ |
| SWS-150 | A; B | $N_{0}$ |
| SWS-300 | A; B | $N_{0}$ |

## R26 for SWS

## Main views R26 head and R26 adapter



## $S$ modules



As opposed to the $R$ modules, the $S$ modules have the connector socket opposite the contact pins.
The following models are available: S26 and S21 (tool coding) suitable for R26

T modules


The $T$ modules and R modules differ in terms of the connector used. $R$ modules have a bayonet connection and T modules have a thread. The following models are available: T26 suitable for R26

## R26 for SWS

Tool Changing • Quidk-change System

## Main views R26 head and R21/R17 adapter



## R26 for SWS

## R21 plug connection


(12) Head side
(13) Adapter side

| Pin out |  |  |
| :---: | :---: | :---: |
| R26 head side | R21 adapter side PT02E-16-26S |  |
| PT02E-16-26P |  |  |
| Male connector | Female connector |  |
| A ---- | - - | --- - A |
| B --- | -- | ---- - B |
| C-- |  | --- - C |
| D ---- | - - | ---- - D |
| E --- | - - | --- - E |
| F -- |  | --- - F |
| G --- |  | ----G |
| H -- |  | --- - H |
| J-- |  | --- - J |
| K --- - |  | --- - K |
| L |  | ---- L |
| M - |  | --- - M |
| N ---- | - | --- - N |
| P ----- |  |  |
| R --- |  |  |
| S ---- |  |  |
| T ----- |  |  |
| U---- | -- |  |
| V ----- | -- | -- - - V |
| W - | -- | --- - W |
| X - - |  | --- - X |
| Y - | - - | --- - Y |
| Z -- | -- | ---- - |
|  | - | --- - a |
|  | - - | ---- - b |
|  | - | ----- - |

## R17 plug connection

| $\begin{gathered} \mathrm{R} 26-\mathrm{M} 12 \\ (\mathrm{P}+\mathbf{2} 2 \mathrm{l}-16-26 \mathrm{P}) \end{gathered}$ | $\begin{gathered} \text { R177-T } 13 \\ (\mathrm{P} 02 \mathrm{E}-16-265) \end{gathered}$ |
| :---: | :---: |
|  |  |
|  |  |

## (12) Head side <br> (13) Adapter side

| Pin out |  |  |
| :---: | :---: | :---: |
| R26 head side | R17 adapter side PT02E-16-26S |  |
| PT02E-16-26P |  |  |
| Male connector | Female connector |  |
| A ---- | -- | - - - - A |
| B -- | -- | --- - B |
| C --- | -- | ----- - |
| D ---- | -- | ----- D |
| E --- | - - | ---- - E |
| F --- |  | --- - F |
| G - - - |  | --- - G |
| H --- |  | - - - - H |
| J---- |  | --- - J |
| K----- |  | --- - K |
| L----- |  |  |
|  |  |  |
| P ----- |  |  |
| R ---- |  |  |
| S --- |  |  |
| T ---- |  |  |
| U----- |  |  |
| V ----- | -- |  |
| W ---- | -- | ---- W |
| X - | -- | --- - X |
| Y --- | -- | ----- Y |
| Z--- | -- | ----- |
| a | -- | ---- - ${ }^{\text {a }}$ |
| b --- | -- | ----- - b |
| c | --- | - c |



## Product description

32-pin
3 Amp/250 VAC* per pin
MS miniature quick-change connector
Contact pins protected against accidental contact
With tool coding as an option
Splash-proof

## Technical data

| Designation | ID | Fits | Description |
| :--- | :--- | :--- | :--- |
| R32 head | 9941387 | SWK | 32 -pin, 3 Amp/250 VAC ${ }^{\star}$ E option with miniature quick-change connector |
| R32 adapter | 9941388 | SWA | 32 -pin, 3 Amp/250 VAC ${ }^{\star}$ option with miniature quick-change connector |

* 250 VAC grounding done by customer
(i) ID only for replacement orders and separate orders


## Suitable cable connectors



|  | Straight |  | $90^{\circ}$ |  |
| :--- | ---: | ---: | ---: | ---: |
| Cable connectors for | ID | Designation | ID | Designation |
| R32 head | 0301272 | KAS-36B-K- 0 | 0301274 | KAS-36B-K-90 |
| R32 adapter | 0301273 | KAS-36B-A-0 | 0301275 | KAS-36B-A-90 |

The cable connector establishes the connection between the R32 module and the cable.
Ready-made cable connectors with 2, 3 or 5 m cable available on request.

## Compatible SWS



| SWS | Side | Adapter plate needed |
| :--- | ---: | ---: |
| $S W S-040$ | $A ; B$ | $N_{0}$ |
| $S W S-041$ | $A$ | $N_{0}$ |
| $S W S-071$ | $A ; B$ | $N_{0}$ |
| $S W S-110$ | $A ; B$ | $N_{0}$ |
| $S W S-150$ | $A ; B$ | $N_{0}$ |
| $S W S-300$ | $A ; B$ | $N_{0}$ |

## R32 for SWS

## Main views R32 head and R32 adapter



[^12]
## Quick-change Rack

Modular quick-change rack in two versions. SWM-S fits change systems from size SWS-005 to SWS-021 and SWM-M fits change systems from size SWS-O40.

## Your advantages and benefits

## Modular system

facilitates a flexible, application-specific design

## V-shaped support points

for accurate positioning of the storage position and repeatability
Aluminum profile as the base body
or use the structure you already have
Corrosion resistant, hardened workpiece pins
Optional sensor monitoring
Intermediate plate blanks
available for attaching workpiece pins.
Alternatively, unused air feed-throughs can be used for attaching the workpiece pins.


## General information on the series

## Storage plate

The U-shaped storage plate is designed to support the tools. The plate is either mounted onto the mounting block or on the 3 or 4 position adapter. The screws and cylindrical pins required for assembly are provided as standard. The V -shaped indentations in the storage plate facilitate compensation of the tool when coupling and uncoupling.

## Intermediate plate blank

The intermediate plate blank is mounted between the tool and the SWA tool change adapter. The SWA screw connection diagram and bore holes for the workpiece bolts are already on the plate. Subsequently, the plate can be machined by the customer to fit the gripper.
Three workpiece pins and screws for mounting the SWA are supplied in the standard delivery package.
The plate is supplied without a customer-specific screw connection diagram as standard.
We would be happy to provide you with a quote for customer-specific plates. Please ask for details.

## Base plate

The base plate forms the basis of the changer rack. It comprises of a square aluminum plate which the aluminum profile is attached t .

## Stand profile and stand bracket

All the parts needed for assembly are delivered as standard for the stand profile and the stand bracket.
The aluminum profile is a $45 \times 90$ Bosch profile with a length of 610 mm . Threads on the front enable the profile to be mounted onto the base plate. The rigidity of the system is improved by attaching a stand bracket.

## Mounting block

The mounting block can be positioned freely on the aluminum profile. We recommend that the block is pinned to ensure secure assembly. The cylindrical pins are already preassembled in the mounting block.
The storage plate or the position adapter are mounted onto the mounting block. Sensor brackets for monitoring the presence of the tool are mounted onto the mounting block.

## 3 or 4 position adapter

The position adapters enable you to fix three or four tools to one stand profile. The position adapter is mounted onto the mounting block and three or four storage plates are mounted onto the adapter. Sensor brackets for monitoring the presence of the tool can be mounted onto the adapter.

## SWM for SWS

## Storage station options SWS-005 to SWS-02 1



Base plate
SWM-TSS-3311
ID 0302580


3 position adapter
SWM-TSS-3308
ID 0302583

[^13]Sensor bracket
SWM-TSS-3315
ID 0302584



Stand profile 610 mm
SWM-TSS-1020-610
ID 0302586

Other lengths available on request


Stand bracket
SWM-TSS-1030
ID 0302581


Mounting block
SWM-TSS-3306
ID 0302582


Extension adapter
SWM-TSS-3361
ID 0302585

4 position adapter
SWM-TSS-3431
ID 0302587


## SWM-S for SWS

Tool Changing • Quidk-change Systems

## Option SWS-005



SWS-005 with intermediate plate


| With intermediate plate | SWS-005 |
| :---: | :---: |
| Storage plate | SWMMTSS-3310 |
|  | ID 0302571 |
| Intermedicte plate blank* | SWM-TSS-3314 |
|  | ID 0302575 |
| Workpiece bolts* | SWM-TSS.M5-3303 |
|  | ID 0302577 |

Presence monitoring via proximity switch possible Yes

SWS-005 using the air feed-through


| Using the air feed-through | SWS.005 |
| :---: | :---: |
| Storage plate | SWM-TSS-3312 |
|  | ID 0302573 |
| Assembly lock for storge block ${ }^{* * *}$ | - |
| Workpiece bols ${ }^{\star *}$ | SWM-SS.M5-3303 |
|  | ID 0302577 |
| Presence monitoring via proximity swith possible | Yes |

* 3 workpiece bolts delivered as standard
** Bolts are available separately
*** Without workpiece bolts


## SWM-S for SWS

## Option SWS-0 11



## SWS-0 11 with intermediate plate



| With intermediate plate | SWS-011 |
| :--- | ---: |
| Storage plate | SWM-TSS-3310 |
|  | ID 0302571 |
| Intermediate plate blank $^{*}$ | SWM-TSS-3314 |
|  | ID 0302575 |
| Workpiece bolts $^{* *}$ | SWM-TSS-M5-3303 |
|  | ID 0302577 |
| Presence monitoring via proximity switch possible | Yes |

SWS-0 11 using the air feed-through


| Using the air feed-hhrough | SWS-011 |
| :--- | ---: |
| Storage plate | SWM-TSS-3310 |
|  | ID 0302571 |
| Assembly block for storage block ${ }^{* * *}$ | - |
|  |  |
| Workpiece bolts $^{* *}$ | SWM-SSS-M5-3303 |
|  | ID 0302577 |
| Presence monitoring via proximity switch possible | No |

* 3 workpiece bolts delivered as standard
** Bolts are available separately
*** Without workpiece bolts


## SWM-S for SWS

Tool Changing • Quidk-change Systems

## Option SWS-020



SWS-020 with intermediate plate


| With intermediate plate | SWS-020 |
| :---: | :---: |
| Storage plate | SWMMTSS-3313 |
|  | ID 0302572 |
| Intermediote plote blank* | SWM-TSS-3319 |
|  | ID 0302576 |
| Workiece bolts** | SWM-SS.M5.-3303 |
|  | ID 0302577 |
| Presence monitoring via proximity swith posible | Yes |

SWS-020 using the air feed-through


| Using the iir feed-flrough | SWS.020 |
| :---: | :---: |
| Storage plate | SWMMTSS-3305 |
|  | ID 0302574 |
| Assembly block for storage block ${ }^{* * *}$ | - |
| Workpiect bols ${ }^{* *}$ | SWMMSS.M5-3303 |
|  | ID 0302577 |
| Presence monitoring via proximity swith possible | Yes |

* 3 workpiece bolts delivered as standard
** Bolts are available separately
*** Without workpiece bolts


## SWM-S for SWS

## Option SWS-02 1



SWS-021 with intermediate plate


| With intermediate plate | SWS-021 |
| :--- | ---: |
| Storage plate | SWM-TSS-3313 |
|  | ID 0302572 |
| Intermediate plate blank $^{*}$ | SWM-TSS-3319 |
|  | ID 0302576 |
| Workpiece bolts $^{* *}$ | SWM-TSS-M5-3303 |
|  | ID 0302577 |
| Presence monitoring via proximity switch possible | Yes |

SWS-021 using the air feed-through


| Using the air feed-through | SWS-021 |
| :--- | ---: |
| Storage plate | SWM-SSS-3313 |
|  | ID 0302572 |
| Assembly block for storage block*** | SWM-SSS-3360 |
|  | ID 0302579 |
| Workpiece boltss $^{\star \star}$ | SWM-SSS-G18-3320 |
|  | ID 0302578 |
| Presence monitoring via proximity switch possible | Yes |

* 3 workpiece bolts delivered as standard
** Bolts are available separately
*** Without workpiece bolts


## SWM-S for SWS

Tool Changing • Quidk-hange Systems
Main views storage station option for SWS



Tool Changing • Quidk-change Systems
$\qquad$

## SWM-M for SWS

## Tool Changing • Quidk-hange Systems

## SWS-040


(1) Quick-change adapter SWA 40
(2) Intermediate plate for SWA 40
(3) Storage module
(4) Proximity switch

| Description | SWS-040 | ID |
| :--- | :---: | :---: |
| Intermediate plate | SWM-SSM-PP-4627 | 0303216 |
| Storage module | SWM-TSM-MM-3597 | 0303212 |
| Proximity switch | SWM-ISM-SM-4206 | 0303243 |
| Proximity switch | IN-B180-S-M12 | 0303244 |
| Presence monitoring <br> via proximity switch possible | Yes |  |

Yes

## SWS-04 1


(1) Quick-change adapter SWA 041
(2) Intermediate plate for SWA 041
(3) Storage module
(4) Proximity switch

| Description | SWS-04I | ID |
| :--- | :---: | :---: |
| Intermediate plate | SWM-SSM-TP-4056 | 0303217 |
| Storage modull | SWM-TSM-MM-3597 | 0303212 |
| Proximity switch | SWM-ISM-SM-4206 | 0303243 |
| Proximity switch | IN-B18O-S-M12 | 0303244 |
| Presence monitoring <br> via proximity switch possible | Yes |  |

## SWS-060


(1) Quick-change adapter SWA 060
(2) Intermediate plate for SWA 060
(3) Storage module
(4) Proximity switch

| Description | SWS-060 | ID |
| :--- | :---: | :---: |
| Intermediate plate | SWM-SSM-TP-4057 | 0303218 |
| Storage module | SWM-TSM-MM-S597 | 0303212 |
| Proximity Switch | SWM-ISM-SM-4206 | 0303243 |
| Proximity switch | IN-BI8O-S-M12 | 0303244 |
| Presence monitoring <br> via proximity switch possible | Yes |  |

SWS-07 1

(1) Quick-change adapter SWA 071
(2) Intermediate plate for SWA 071
(3) Storage module
(4) Proximity switch

| Description | SWS-071 | ID |
| :--- | :---: | :---: |
| Intermediate plate | SWM-SM-TP-4058 | 0303219 |
| Storage module | SWM-TSM-MM-3597 | 0303212 |
| Proximity switch | SWM-ISM-SM-4206 | 0303243 |
| Proximity switch | IN-B180-S-M12 | 0303244 |
| Presence monitoring <br> via proximity switch possible | Yes |  |

SWS-1 10

(1) Quick-change adapter SWA 110
(2) Intermediate plate for SWA 110
(3) Storage module
(4) Proximity switch

| Description | SWS--110 | ID |
| :--- | :---: | :---: |
| Intermediate plate | SWM-TSM-TP-4059 | 0303220 |
| Storage module | SWM-TSM-MM-4018 | 0303214 |
| Proximity switch | SWM-ISM-SM-4205 | 0303245 |
| Proximity switch | IN-B18O-S-M12 | 0303244 |
| Pres |  |  |

Presence monitoring
via proximity switch possible
Yes

SWS-150

(1) Quick-change adapter SWA 150
(2) Intermediate plate for SWA 150
(3) Storage module
(4) Proximity switch

| Descripion | SWS.150 | ID |
| :---: | :---: | :---: |
| Intermediote plate | SWM-TSM-TP-4060 | 0303221 |
| Storage module | SWM-SMM-MM-4018 | 0303214 |
| Proximity swith | SWM-ISM.SM-4205 | 030345 |
| Proximity swith | IN.SB180-S.M12 | 030344 |
| Presence monitoring via proximity switch possible | Yes |  |

## GWS

Tool Changing • Gripper Change System


Sizes
064 .. 125


Handling weight
up to 170 kg


Moment load $\mathrm{M}_{\mathrm{x}}$ up to 400 Nm


Moment load $\mathrm{M}_{\mathrm{y}}$ up to 400 Nm


Moment load $\mathrm{M}_{\mathrm{z}}$ up to 600 Nm

## Application example



Replacing and placing tools in a gripper changing rack
(1) Gripper Changing Rack
(2) Gripper Changing Adapter GWA
(3) Gripper Changing Head GWK

## Gripper Change System

Pneumatic gripper change system

## Area of application

Fast conversion of production lines for other products; the use of various different tools on a robot

## Your advantages and benefits

## Integrated air feed-through

for safe energy supply for the gripper modules
Storage racks for all sizes
for reliable positioning of your tools
Storage racks to fit all sizes
available as an accessory for reliable positioning of your tools
Robust wedge-hook kinematics
for a secure connection between the gripper changing head and the gripper changing adapter
Two 18-pin electrical feed-throughs as standard
sufficient feed-throughs for most applications

## ISO flange

for easy attachment to most types of robots without additional adapter plates

## General information on the series

## Actuation

Pneumatic, compressed air filtered ( $10 \mu \mathrm{~m}$ ) , dry or lubricated
Operating pressure range
4.5 bar to 6 bar

## Energy transmission

For elec. power: $2 \times 18$-pin $0.14 \mathrm{~mm}^{2} ; 60 \mathrm{~V} \sim$; max. 1 A delivered as standard.
Available as an option: 4 -pin $2.5 \mathrm{~mm}^{2} ; 380 \mathrm{~V} / \mathrm{B} \sim$; max. 25 A in accordance with VDE guidelines

## Protection class

IP 65 when locked, in accordance with DIN 40050

## Coding

Four proximity switches can be installed, therefore a total of 15 adapters possible or via elec. plug connection


Locking mechanism monitoring
Possible via inductive proximity switches
Working principle
Wedge gear with planar power transmission
Sufety equipment
In the event of a power failure, self-locking is ensured by means of integrated springs
Ambient temperature
$5^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

## Material

Housing: high-strength, hard-coated Al alloy. Functional components: hardened steel

## Maintenance

Prelubricated - relubrication recommended after 2 million cycles

## Warranty

24 months

## Tool Changing - Gripper Change System

## Sectional diagram



Pneumatics feed-through
integration into housing means no interfering contours

2 E module
for electrical energy and signal transmission
(3) Locking mechanism
wedge-hook system for high locking forces, integrated springs for maintaining the locking force in the event of a drop in pressure
(4) Drive
pneumatic and powerful with extremely easy handling
(5) Housing
weight-reduced through the use of a high-strength aluminum alloy

## 6 Lock

for compensating positioning errors in the $X-Y$ plane

## Function description

Automatic changing of the robot tool (e.g. gripper, vacuum lifting devices, pneumatically or electrically driven tools, electrode holders etc.) increases the flexibility of your robot.
The gripper changing system (GWS) is made up of a gripper changing head (GWK) and a gripper changing adapter (GWA). The GWK, mounted onto the robot, couples up the GWA mounted onto your tool. The locking mechanism, based on a wedgehook system, provides a secure connection. Integrated springs maintain the locking force in the event of a drop in pressure. After coupling, pneumatic and electric feedthroughs automatically supply your robot tool.

## Accessories


(i) For the exact size of the accessories, availability for this size and the designation and ID, please refer to the additional views at the end of the size in question. You can find more detailed information on our accessory range in the "Accessories" catalog section.

## GWS-064

Tool Changing - Gripper Change System


Product description

## Moment load



## Technical data

| Designation |  | GWK-064 | GWK-A-064 | GWA-064 |
| :---: | :---: | :---: | :---: | :---: |
|  | ID | 0302506 | 0302534 | 0302517 |
| Piston stroke control |  | No | Yes | No |
| Maximum payload | [kg] | 60 | 60 | 60 |
| Repeat accuracy | [mm] | 0.02 | 0.02 | 0.02 |
| Weight (in tota, without cables) | [kg] | 0.5 | 0.74 | 0.35 |
| Pneumatic energy transmission |  | $4 \times \mathrm{M5}$ and $2 \times \mathrm{G} \mathrm{T} / 8^{\prime \prime}$ | $4 \times \mathrm{M} 5$ and $2 \times \mathrm{G} \mathrm{1/8"}$ | $4 \times \mathrm{M} 5$ and $2 \times \mathrm{C} \mathrm{T} / 8^{\prime \prime}$ |
| Electric energy transmission |  | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ |
| Min./max. distance on locking | [mm] | 2 | 2 | 2 |
| Maximum permissible XY offset | [mm] | 1.5 | 1.5 | 1.5 |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | 1 | 1 | 1 |

## GWS-064

## Main views



The drawing shows the change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(90) Tool side cable length 2 m
(91) Robot side cable length 5 m

## View of GWK-A with piston stroke control


(5) Through-bore for screw connection with screw (enclosed)

## GWS-064

Tool Changing - Gripper Change System

## Installing the proximity switch in the GWK-A



End position monitoring:
Inductive proximity switches, for direct mounting

| Designation | ID | Recommended product |
| :--- | :---: | :--- |
| $\mathbb{N} 65 / S-M 12$ | 0301576 |  |
| $\mathbb{N} 65 / S-M 8$ | 0301476 |  |
| INK $65 / S$ | 0301554 |  |

(i) Two sensors and optional extension cables are needed for each gripper change system

## Installing the proximity swith for coding



Coding:
Inductive proximity switches, for direct mounting

| Designation | ID | Recommended product |
| :--- | :---: | :---: |
| IN 60/S-M12 | 0301585 |  |
| IN 60/S-M8 | 0301485 | • |
| INK $60 / \mathrm{S}$ | 0301553 |  |

(i) A max. of four sensors can be mounted per gripper change system. Therefore 15 tools can be given binary codes.


Extension cables for proximity switches/magnetic switches

| Designation | ID |
| :--- | :--- |
| GK 3-M8 | 0301622 |
| KV 10-M12 | 0301596 |
| KV 10-M8 | 0301496 |
| KV 2O-M12 | 0301597 |
| KV 20-M8 | 0301497 |
| KV 3-M12 | 0301595 |
| KV 3-M8 | 0301495 |
| W 3-M12 | 0301503 |
| W 5-M12 | 0301507 |
| WK 3-M8 | 0301594 |
| WK 5-M8 | 0301502 |

(1) Please note the minimum permitted bending radii for the sensor cables, which are generally 35 mm .

## GWS-064

## Forces and moments GWM-S 064



| Designation | $F_{Z}$ | $M_{x}$ | $M_{y}$ |
| ---: | ---: | ---: | ---: |
| GWM-S 064 | 420 N | 6 Nm | 23 Nm |

## Adapter plate arrangement



Adapter arrangement on tool-side of GWA

## Note

When attaching tools to the GWA adapter plates the external diameters indicated with $\square D=64 \mathrm{~mm}$ are not to be exceeded in the height $h_{2}=5 \mathrm{~mm}$.

## GWM-S 064


(1) Robotside connection
(90) Center of GWA
(2) Tool-side connection

| Designation | GWM-S |
| :--- | :--- |
| Material | Aluminum |
| Presence monitoring | Possible by means of proximity switches (by separate order) |
| Assembly position | Horizontal only (vertical on request) |
| Add. coding | On request |
| Lood compensation |  |
| in $X, Y$-axis | $\pm 0.5 \mathrm{~mm}$ |
| in $Z$-axis | $\pm 0.25 \mathrm{~mm}$ |

## Proximity switches for GWM-S



## Proximity switches

with easy to assemble design and LED display

| Designation | Switching function | ID |
| :--- | :--- | :--- |
| INW $80 /$ SL | Closer | 0301509 |

## GWS-080

Tool Changing • Gripper Change System


## Product description

## Moment load



## Technical data

| Designation |  | GWK-080 | GWK-A-080 | GWA-080 |
| :---: | :---: | :---: | :---: | :---: |
|  | ID | 0302509 | 0302535 | 0302520 |
| Piston stroke control |  | No | Yes | No |
| Maximum payload | [kg] | 86 | 86 | 86 |
| Repeat accuracy | [mm] | 0.02 | 0.02 | 0.02 |
| Weight (in total, without cables) | [kg] | 0.65 | 0.95 | 0.4 |
| Pneumatic energy transmission |  | 6xM5 and $2 \times \mathrm{G} \mathrm{T} / 8^{\prime \prime}$ | 6x M5 and $2 \times \mathrm{G} \mathrm{1/8"}{ }^{\text {" }}$ | 6xM5 and $2 \times \mathrm{G} 1 / 8^{\prime \prime}$ |
| Electric energy transmission |  | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ | $2 \times 18$ pins $60 \mathrm{~V} / \mathrm{l} \mathrm{A}$ | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ |
| Min./max. distance on locking | [mm] | 2 | 2 | 2 |
| Maximum permisible XY offset | [mm] | 1.5 | 1.5 | 1.5 |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | 1 | 1 | 1 |

## Main views



The drawing shows the change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(90) Tool-side cable length 2 m
(91) Robot-side cable length 5 m

## View of GWK-A with piston stroke control


(5) Through-bore for screw connection with screw (enclosed)

## GWS-080

Tool Changing - Gripper Change System

## Installing the proximity switch in the GWK-A



End position monitoring:
Inductive proximity switches, for direct mounting

| Designation | ID | Recommended product |
| :--- | :---: | :---: |
| $\mathbb{N} 65 / S$ Ml2 | 0301576 |  |
| $\mathbb{N} 65 / S$ M8 | 0301476 |  |
| INK $65 / S$ | 0301554 |  |

(i) Two sensors and optional extension cables are needed for each gripper change system

## Installing the proximity swith for coding



Coding:
Inductive proximity switches, for direct mounting

| Designation | ID | Recommended product |
| :--- | :---: | :---: |
| $\mathbb{N N} 60 / \mathrm{S}$-M12 | 0301585 |  |
| $\mathbb{N} 60 / \mathrm{S}$-M | 0301485 | $\bullet$ |
| $\mathbb{N N K} 60 / \mathrm{S}$ | 0301553 |  |

(i) A max. of four sensors can be mounted per gripper change system. Therefore 15 tools can be given binary codes.


Extension cables for proximity switches/magnetic switches

| Designation | ID |
| :--- | :--- |
| GK 3-M8 | 0301622 |
| KV 10-M12 | 0301596 |
| KV 10-M8 | 0301496 |
| KV 2O-M12 | 0301597 |
| KV 20-M8 | 0301497 |
| KV 3-M12 | 0301595 |
| KV 3-M8 | 0301495 |
| W 3-M12 | 0301503 |
| W 5-M12 | 0301507 |
| WK 3-M8 | 0301594 |
| WK 5-M8 | 0301502 |

(i) Please note the minimum permitted bending radii for the sensor cables, which are generally 35 mm .

Tool Changing • Gripper Change System

## Forces and moments GWM-S 080



| Designation | $F_{Z}$ | $M_{x}$ | $M_{y}$ |
| :--- | :--- | :--- | :--- |
| GWM-S 080 | 600 N | 8 Nm | 30 Nm |

## Adapter plate arrangement



Adapter arrangement on tool-side of GWA

## Note

When attaching tools to the GWA adapter plates the external diameters indicated with $\square D=80 \mathrm{~mm}$ are not to be exceeded in the height $h_{2}=6 \mathrm{~mm}$.

## GWM-S 080


(1) Robot-side connection
(90) Centre of GWA
(2) Tool-side connection

| Designation | GWM/GWM-S |
| :--- | :--- |
| Material | Aluminum |
| Presence monitoring | Possible, by means of proximity switches (by separate order) |
| Assembly position | Horizontal only (vertical on request) |
| Add. coding | On request |
| Load compensation |  |
| in $X, Y$-axis $\pm 0.5 \mathrm{~mm}$ <br> in $Z$-axis $\pm 0.25 \mathrm{~mm}$ |  |

## Proximity switches for GWM-S



## Proximity switches

with easy to assemble design and LED display

| Designation | Switching function | ID |
| :--- | :--- | :--- |
| INW 80/SL | Closer | 0301509 |

## GWS-125

Tool Changing • Gripper Change System


## Product description

## Moment load



## Technical data

| Designation |  | GWK-125 | GWK-A-125 | GWA-125 |
| :---: | :---: | :---: | :---: | :---: |
|  | ID | 0302514 | 0302536 | 0302525 |
| Piston stroke control |  | No | Yes | No |
| Maximum payload | [kg] | 170 | 170 | 170 |
| Repeat accuracy | [mm] | 0.02 | 0.02 | 0.02 |
| Weight (in tota, without cables) | [kg] | 2.3 | 2.6 | 1.7 |
| Pneumatic energy transmission |  | $8 \times \mathrm{G} \mathrm{1/8"} 2 \times \mathrm{G} \mathrm{1/4"}$ | $8 \times 61 / 8^{\prime \prime} 2 \times \mathrm{Cl} / 4^{\prime \prime}$ | $8 \times \mathrm{G} \mathrm{1/8"} 2 \times \mathrm{G} \mathrm{T} / 4^{\prime \prime}$ |
| Electric energy transmission |  | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ | $2 \times 18$ pins $60 \mathrm{~V} / 1 \mathrm{~A}$ |
| Min./max. distance on locking | [mm] | 2 | 2 | 2 |
| Maximum permissible XY offset | [mm] | 1.5 | 1.5 | 1.5 |
| Maximum permissible angular offset | [ ${ }^{\circ}$ ] | 1 | 1 | 1 |

## Main views



The drawing shows the change system in the basic version, the dimensions do not include the options described below.

A Locked air connection
B Unlocked air connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(90) Tool-side cable length 2 m
(91) Robot-side cable length 5 m

## View of GWK-A with piston stroke control


(5) Through-bore for screw connection with screw (enclosed)

## GWS-125

## Tool Changing • Gripper Change System

## Installing the proximity switch in the GWK-A



End position monitoring:
Inductive proximity switches, for direct mounting

| Designation | ID | Recommended product |
| :--- | :---: | :---: |
| $\mathbb{T N} 65 / S$-M12 | 0301576 |  |
| $\mathbb{N} 65 / S-M 8$ | 0301476 | $\bullet$ |
| $\mathbb{N K K} 65 / \mathrm{S}$ | 0301554 |  |

(i) Two sensors and optional extension cables are needed for each gripper change system

## Installing the proximity swith for coding



Coding:
Inductive proximity switches, for direct mounting

| Designation | ID | Recommended product |
| :--- | :---: | :---: |
| IN 60/S-M12 | 0301585 |  |
| IN $60 / S$-M8 | 0301485 | $\bullet$ |
| INK $60 / S$ | 0301553 |  |

(1) A max. of four sensors can be mounted per gripper change system. Therefore 15 tools can be given binary codes.

Extension cables for proximity switches/magnetic switches

| Designction | ID |
| :--- | :--- |
| GK 3-M8 | 0301622 |
| GK 3-M5-PNP/NPN | 0301652 |
| KV 10-M12 | 0301596 |
| KV 10-M8 | 0301496 |
| KV 20-M12 | 0301597 |
| KV 20-M8 | 0301497 |
| KV 3-M12 | 0301595 |
| KV 3-M8 | 0301495 |
| W 3-M12 | 0301503 |
| W 5-M12 | 0301507 |
| WK 3-M8 | 0301594 |
| WK 3-M8 NPN | 0301602 |
| WK 5-M8 | 0301502 |
| WK 5-M8 NPN | 9641116 |

(i) Please note the minimum permitted bending radii for the sensor cables, which are generally 35 mm .

## Forces and moments GWM-S 125



| Designation | $F_{Z}$ | $M_{x}$ | $M_{Y}$ |
| :--- | :--- | :--- | :--- |
| GWM-S 125 | 1500 N | 30 Nm | 70 Nm |

## Adapter plate arrangement



Adapter arrangement on tool-side of GWA

## Note

When oftraching tools to the GWA odapter plates the external diameters indicated with $\square \mathrm{D}=125 \mathrm{~mm}$ are not to be exceeded in the height $h_{2}=7 \mathrm{~mm}$.

## GWS-S 125


(1) Robot-side connection
(9) Centre of GWA
(2) Tool-side connection

| Designation | GWM/GWM-S |
| :--- | :--- |
| Material | Aluminum |
| Presence monitoring | Possible, by means of proximity switches (by separate order) |
| Assembly position | Horizontal only (vertical on request) |
| Add. coding | On request |
| Lood compensation |  |
| in X, Y-axis | $\pm 0.5 \mathrm{~mm}$ |
| in Z-axis | $\pm 0.25 \mathrm{~mm}$ |

## Proximity switches for GWM-S



## Proximity switches

with easy to assemble design and LED display

| Designation | Switching function | ID |
| :--- | :--- | :--- |
| INW 80/SL | Closer | 0301509 |



## Application example

Flexible assembly unit for various product versions. Simple and quick tool changing using an HWS


## Manual Gripper Change System

Manual tool changing system with integrated air feed-through and optional electrical feed-through

## Area of application

Ideally suited for use with flexible production set-ups, for products with a large range of versions

## Your advantages and benefits

## Series with six sizes

for an optimum selection of sizes and a broad range of applications
Integrated air feed-through
for safe energy supply for the handling modules and tools
Mounting option for additional, optional pneumatic and electric modules
for optimum setup in line with your application
Simple handling without any additional tools can be detached at any time in one single movement ISO flange
for easy attachment to most types of robots without additional adapter plates


## General information on the series

## Working principle

A semi-cylindrical shaft is clamped or unclamped by turning the hand lever
Actuation
Manual, via integrated hand lever
Energy transmission
Integrated pneumatic feed-through, electric as an option
Warranty
24 months

## Sectional diagram



Direct mounting
by means of standardized ISO 9409 interface for robots
(2) Housing
weight-reduced through the use of a hardanodized, high-strength aluminum alloy
(4) Locking mechanism
patented, simple and safe
(3) Integrated hand lever
for manual actuation

## Function description

The manual changing system (HWS) consists of a manual changing head (HWK) and a manual changing adapter (HWA).
The manual changing head (HWK) is locked, positively and without clearance, to the manual changing adapter (HWA) by means of a patented locking system. In order to do this a semi-cylindrical shaft is rotated by $180^{\circ}$ using a hand lever. Integrated pneumatic feed-throughs reliably supply the tool with power.

## Accessories


(i) For the exact size of the accessories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question. You can find more detailed information on our accessory range in the "Accessories" catalog section.

## General information on the series

## Extreme ambient conditions

Please note that use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the tool life span of these units and we cannot accept any liability for this reduction. However, in many cases we have a solution at hand. Please ask for details.


## Moment load


$M_{x_{1}}, M_{y}$ : The dynamic moment load can be up to three times larger than the static moment load.
$M_{z}$ : Tests have shown that mounting screws shear off in the event of 20 -fold static moment. A twist angle is produced dependant upon $M_{2}$. This is less than $0.2^{\circ}$ at the $M_{2}$ stated.

## Technical data

| Designation | HWS-040 |  |  |
| :---: | :---: | :---: | :---: |
| Graduated circle diameter | [mm] | 40 |  |
| Maximum payload | [kg] | 8 | A larger payload is possible with smaller moments |
| Tensile force | [ N ] | 700 |  |
| Weight | [kg] | 0.22 | $0.14 \mathrm{~kg} \mathrm{HWK} / 0.08 \mathrm{~kg} \mathrm{HWA}$ |
| Repeat accuracy | [mm] | 0.01 | Tested at 80000 cycles |
| Pneumatic feed-through |  | $2 \times \mathrm{M5}$ | Max. 7 bar |
| Screw connection diagram |  | 150-9409-40-4-M6 |  |

## Main views



## E modules



1 Sub-D connector Al5
2 E module ElO
(12) Head side
(12) Head side
(13) Adapter side

## How to order (example)



| Designation |  | Detailed data sheet <br> E10 |
| :--- | :--- | ---: |
| A15 | 10 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, solder contacts | See "SWS options" chapter |



## Moment load


$M_{x_{1}}, M_{y}$ : The dynamic moment load can be up to three times larger than the static moment load.
$M_{z}$ : Tests have shown that mounting screws shear off in the event of 20 -fold static moment. A twist angle is produced dependant upon $M_{2}$. This is less than $0.2^{\circ}$ at the $M_{2}$ stated.

## Technical data

| Designation | HWS-050 |  |  |
| :---: | :---: | :---: | :---: |
| Graduated circle diameter | [mm] | 50 |  |
| Maximum payload | [kg] | 12 | A larger payload is possible with smaller moments |
| Tensile force | [ N ] | 900 |  |
| Weight | [kg] | 0.38 | $0.24 \mathrm{~kg} \mathrm{HWK} / 0.14$ HWA |
| Repeat accuracy | [mm] | 0.01 | Tested at 80000 cycles |
| Pneumatic feed-through |  | $4 \times$ M5 | Max. 7 bar |
| Screw connection diagram |  | 150-9409-50-4-M6 |  |

## Main views



## E modules <br> modules

| 1 Sub-D conne <br> (12) Head side <br> (13) Adapter side | Al5 2 E module E10 <br>  (12) Head side <br> (13) Adapter side  |  |
| :---: | :---: | :---: |
| Designation |  | Detailed data sheet |
| E10 | 10 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, solder contacts | See "SWS options" chapter |
| A15 | 10 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$, Sub-D connector | See "SWS options" chapter |

(1) Robot-side connection
(2) Tool-side connection
(25) Air feed-through

## How to order (example)




## Moment load


$M_{x_{1}}, M_{y}$ : The dynamic moment load can be up to three times larger than the static moment load.
$M_{z}$ : Tests have shown that mounting screws shear off in the event of 20 -fold static moment. A twist angle is produced dependant upon $M_{2}$. This is less than $0.2^{\circ}$ at the $M_{2}$ stated.

## Technical data

| Designation | HWS-063 |  |  |
| :---: | :---: | :---: | :---: |
| Graduated circle diameter | [mm] | 63 |  |
| Maximum payload | [kg] | 16 | A larger payload is possible with smaller moments |
| Tensile force | [ N ] | 1000 |  |
| Weight | [kg] | 0.60 | HWK $0.40 \mathrm{~kg} / \mathrm{HWA} 0.20 \mathrm{~kg}$ |
| Repeat accuracy | [mm] | 0.01 | Tested at 80000 cycles |
| Pneumatic feed-through |  | $4 \times \mathrm{Gl} / 8^{\prime \prime}$ | Max. 7 bar |
| Screw connection diagram |  | 150-9409-63-4.M6 |  |

## Main views



## E modules

| 1 | MS connector K19 | 2 MS connector K26 |
| :--- | :--- | :--- |
| (12) Head side | (12 | Head side |
| (13) Adapter side | (13) Adapter side |  |


| Designation |  | Detailed data sheet |
| :--- | :--- | ---: |
| K19 | 19 pins, 3 A/50 V MS plug, splash-proof | See "SWS options" chapter |
| K26 | 26 pins, $3 \mathrm{~A} / 50 \mathrm{~V}$ MS plug, splash-proof | See "SWS options" chapter |



1 MS connector K19
2 MS connector K26
(12) Head side
(13) Adapter side

## Detailed data sheet

K26 26 pins, A/SOV MS plug, splash-proo See "SWS options" chapter
(1) Robot-side connection
(2) Tool-side connection
(25) Air feed-through

## How to order (example)




## Moment load


$M_{x_{1}}, M_{y}$ : The dynamic moment load can be up to three times larger than the static moment load.
$M_{z}$ : Tests have shown that mounting screws shear off in the event of 20 -fold static moment. A twist angle is produced dependant upon $M_{2}$. This is less than $0.2^{\circ}$ at the $M_{2}$ stated.

## Technical data

| Designation | HWS-080 |  |  |
| :---: | :---: | :---: | :---: |
| Graduated circle diameter | [mm] | 80 |  |
| Maximum payload | [kg] | 24 | A larger payload is possible with smaller moments |
| Tensile force | [ N ] | 1200 |  |
| Weight | [kg] | 0.94 | HWK 0.64 kg/ HWA 0.30 kg |
| Repeat accuracy | [mm] | 0.01 | Tested at 80000 cycles |
| Pneumatic feed-through |  | $5 \times \mathrm{Gl} / 8^{\prime \prime}$ | Max. 7 bar |
| Screw connection diagram |  | 150-9409-80-6-M8 |  |

## Main views



## E modules


(1) Robot-side connection
(2) Tool-side connection
(25) Air feed-through

How to order (example)



## Moment load


$M_{x_{2}}, M_{4}$ : The dynamic moment load can be up to three times larger than the static moment load.
$M_{2}$ : Tests have shown that mounting screws shear off in the event of 20 -fold static moment. A twist angle is produced dependant upon $\mathrm{M}_{2}$. This is less than $0.2^{\circ}$ at the $M_{2}$ stated.

## Technical data

| Designation | HWS-100 |  |  |  |  |
| :--- | :--- | ---: | :--- | :---: | :---: |
| Graduated circle diameter | $[\mathrm{mm}]$ | 100 |  |  |  |
| Maximum payload | $[\mathrm{kg}]$ | 30 | A larger payload is possible with smaller moments |  |  |
| Tensile force | $[\mathrm{N}]$ | 1500 |  |  |  |
| Weight | $[\mathrm{kg}]$ | 2.30 | HWK $1.35 \mathrm{~kg} / \mathrm{HWA} 0.95 \mathrm{~kg}$ |  |  |
| Repeat accuracy | $[\mathrm{mm}]$ | 0.015 | Tested at 80000 cycles |  |  |
| Pneumatic feed-through |  | $6 \times \mathrm{Gl} / 8^{\prime \prime}$ | Max. 7 bar |  |  |
| Screw connection diagram |  | $150-9409-100-6-\mathrm{M8}$ |  |  |  |

## Main views



## E modules



1 MS connector R19
2 MS connector R26
(12) Head side
(12) Head side
(13) Adapter side

## How to order (example)

$\mathrm{HW} \square$-100- $\square \square \square-000$

| Designation |  |
| :--- | :--- |
| R19 | 19 pins, 3 A/50 V MS plug, splash-proof |
| R26 | 26 pins, 3 A $/ 50 \mathrm{~V}$ V MS plug, splash-proof "SWS options" chapter |

## Moment load



$M_{x_{1}}, M_{y}$ : The dynamic moment load can be up to three times larger than the static moment load.
$M_{z}$ : Tests have shown that mounting screws shear off in the event of 20 -fold static moment. A twist angle is produced dependant upon $M_{2}$. This is less than $0.2^{\circ}$ at the $M_{2}$ stated.

## Technical data

| Designation | HWS-125 |  |  |  |  |
| :--- | :--- | ---: | :--- | :---: | :---: |
| Graduated circle diameter | $[\mathrm{mm}]$ | 125 |  |  |  |
| Maximum payload | $[\mathrm{kg}]$ | 54 | A larger payload is possible with smaller moments |  |  |
| Tensile force | $[\mathrm{N}]$ | 1600 |  |  |  |
| Weight | $[\mathrm{kg}]$ | 3.92 | HWK $2.40 \mathrm{~kg} / \mathrm{HWA} 1.52 \mathrm{~kg}$ |  |  |
| Repeat accuracy | $[\mathrm{mm}]$ | 0.02 | Tested at 80000 cycles |  |  |
| Pneumatic feeddhrough |  | $6 \times \mathrm{Gl} / 4^{\prime \prime}$ | Max. 7 bar |  |  |
| Screw connection diagram |  |  |  |  |  |

## Main views


(1) Robot-side connection
(2) Tool-side connection
(25) Air feed-through

## E modules

1 MS connector R19
(12) Head side

MS connector R26
(12) Head side
(13) Adapter side

| Designation |  |
| :--- | :--- |
| R19 | 19 pins, 3 A/50 V MS plug, splash-proof |
| R26 | 26 pins, 3 A $/ 50 \mathrm{~V}$ V MS plug, splash-proof "SWS options" chapter |

## How to order (example)

$\mathrm{HW} \square-125-\square \square \square-000$

FWS
Change • Flat Manual Gripper Change System


Sizes
50


Payload
16 kg


Torque load $\mathrm{M}_{\mathrm{x}}$ 50 Nm


Torque load $\mathrm{M}_{\mathrm{y}}$ 50 Nm


Torque load $\mathrm{M}_{\mathbf{z}}$ up to 4x

## Example for application

Lightweight arm in the field of service robotic

(1) 3-Finger Electric Gripping Hand SDH

3 Flat Manual Change System FWS
(2) Servo-electric Rotary Actuator PRL

## Flat manual change system

Extremely flat manual change system with integrated air and electrical feed-through

## Area of application

Can be used wherever low clearance between the effector and the flange surface of the robot arm, low weight and fast changing of the effector are required.

## Benefits

Extremely flat design (with a height of only 14 mm ) Weight-reduced for low interference contours and fast effector change
Easily handling without the need of additional tools Can be released easily and quickly
Integrated feed-throughs
for up to four fluid and/or 8 electric signals
Central arrangement of the electrical and pneumatic feed-throughs
Therefore especially suitable for automation components with internal supply lines

## ISO flange pattern

for easy installation, complies with EN ISO 9409-1:2004
"Industrial robot mechanical interfaces" with a graduated circle diameter of 50 mm

## General information on the series

## Working principle

locking is achieved by turning the actuating ring
Actuation
manual via integrated locking ring
Energy transmission
integrated pneumatic/fluid and electric feed-through
Warranty
24 months

## Change • Flat Manual Gripper Change System

## Sectional diagram



FWK robot-side change head with ISO screw connection diagram for direct mounting on the robot flange
(2) FWA tool-side change adapter
(3) Coupling ring
for manual actuation of the change system
(4) Pneumatic feed-through
no interfering contour due to integration in housing

## Functional characteristics

The flat manual change system FWS consists of a change head (FWK) and a change adapter (FWA). The change head is connected with the change adapter by a form-fit connection by actuating the locking ring.
Integrated pneumatic and electric feed-through supply the tool reliably with energy.

## Options and special information

Central pneumatic and electric feed-through
If central arrangement of the energy feed-throughs is not possible or not practical, a radial cable feed-through in the form of a spacer ring can be inserted in the FWS.

## Accessories

Fittings

Accessories from SCHUNK -
the suitable supplement for
maximum functionality,
reliability and performance
of all automation modules.

(i) For the exact size of the accessories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question. You can find more detailed information on our accessory range in the "Accessories" catalog section.

## General information on the series

## Extreme ambient conditions

Please note that use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the tool life span of these units and we cannot accept any liability for this reduction. However, in many cases we have a solution at hand. Please ask for details.


## Product description

The change system complies with EN ISO 9409-1:2004 "Industrial robots - mechanical interfaces" with a graduated circle diameter of 50 mm . Due to the low height of just 14 mm , the ideal field of application of the change system are sites, where low interference contours between the effector and the flange surface of the robot arm are given, low weights and fast changing of the effector are required.

Up to 28 electric and 2 pneumatic feed-throughs are available, centrally located. Therefore the FWS is especially suitable for automation components with internal supply lines. If this should not be possible, a spacer can be used for radial cable feed-through.

## Moment load


(i) The dynamic moment load can be up to three times larger than the static moment load. Tests have shown that the system will only begin to fail in the event of 20 -fold static moment.

## Technical dafa

| Designation |  | FWK-050-0.0 | FWA-050-0.0 | FWK-050-2.8 | FWA-550-2.8 | FWK-050-40 | FWA-050-40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ID | 320600 | 320601 | 320602 | 320603 | 320604 | 320605 |
| Max. paylood | [kg] |  |  | 16 |  |  |  |
| Torque load |  |  |  |  |  |  |  |
| M ${ }^{\text {x }}$ | [ Nm ] |  |  | 50 |  |  |  |
| M | [ Nm ] |  |  | 50 |  |  |  |
| $M_{2}$ | [ Nm ] |  |  | 35 |  |  |  |
| Weight | [g] | 85 | 45 | 94 | 52 | 98 | 60 |
| Air feed-through |  | 0 | 0 | 2 | 2 | 4 | 4 |
| Electric feed-through |  | 0 | 0 | 8 | 8 | 0 | 0 |

## Main views FWS-050-0-0


(1) Connection, robot-side
(24) Bolt pitch circle

## FWS-050-4-0


(1) Connection, robot-side
(2) Connection, tool-side
(25) Air feed-through
(90) Connection for pneumatic hose

FWS-050-2-8

(1) Connection, robot-side
(2) Connection, tool-side

[^14]
## FWS-050

Change • Flat Manual Gripper Change System

## Screw connection diagram for ISO flange pattern


(2) Connection, tool-side
(3) Adapter plate
(24) Bolt pitch circle
$\qquad$

Feed-through


| Series | Size | Page |
| :--- | :--- | :--- |
| Rotary Feed-hrough for Robots |  |  |
| DDF |  | 202 |
| DDF | 031 | 206 |
| DDF | 040 | 208 |
| DDF | $040-1$ | 210 |
| DDF | 050 | 212 |
| DDF | $050-1$ | 214 |
| DDF | 063 | 216 |
| DDF | 080 | 218 |
| DDF | $080-1$ | 220 |
| DDF | 100 | 222 |
| DDF | $100-1$ | 224 |
| DDF | 125 | 226 |
| DDF | $125-1$ | 228 |
| DDF | 160 | 230 |
| DDF | $160-1$ | 232 |
| Stationary Rotary Feed-fhrough |  |  |
| DDF-SE |  | 234 |
| DDF-SE | 080 | 238 |
| DDF-SE | 120 | 240 |

Feed-hrough - Rotary Feed-through for Robots


Sizes
031 .. 160


Max. speed
$1201 / \min$


Air feed-through
$2 x$.. $4 x$


Electrical feed-throughs Up to $10 x$

## Application example



Insertion tool for assembling small to medium-sized axes. The rotary feed-through ensures that they can be rotated several times and in an unlimited way (>360 $)$ during the assembly process. Slip ring contacts and air feed-throughs integrated into the rotary feed-through reliably supply the gripper with power.
(1) Rotary Feed-through DDF-125

2 sWS Quick-change System

PZN-plus 200-1 3-Finger Centric Gripper

## Rotary Feed-through for Robots

Pneumatic and electric rotary feed-hhrough
for use on the robot

## Area of application

Robot applications with unlimited rotational movement

## Your advantages and benefits

Combined air and electrical feed-through
for extensive supply to your gripper system
ISO flange
for easy attachment to most types of robots without additional adapter plates
Complete series with 14 sizes
for an optimum selection of sizes
Electric plug contacts
for easy replacement and easy integration


## General information on the series

Pneumatics feed-through
Up to four feed-throughs with a max. of 10 bar
Electrical feed-throughs
Via a slip ring, up to ten electrical signals with 60 V and 1 A
Mounting
Standardized ISO 9409 interface (robot-side)

## Material

The rotary feed-through is made of a
high-strength, hard-coated aluminum alloy

## Assembly position

Optional
Ambient temperature
From $5^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Scope of delivery
Small parts for fastening, operating manual, maintenance instructions,
manufacturer's declaration

## Sectional diagram


weightreduced through the use of a hardanodized, high-strength aluminum alloy
(2) Torque Support
to support stationary side of the unit
(3) ISO Adapter Plate
(optional)
(4) Pneumatics Feed-through
to supply the gripper, linear unit etc.

## Function description

The DDF facilitates rotation of the robot axis by more than $360^{\circ}$, without hoses and cables twisting around the axis. Integrated air feed-throughs and slip ring contacts reliably supply the tool with power, even at high speeds.
The DDF consists of two parts. The shaft colored grey in the rendered illustration is mounted onto the robot's flange. There is a ring (red) around the shaft. The ring is joined to a non-rotating part of the robot via a torque support. The shaft rotates in the ring when the robot flange turns. A slip ring, integrated into the shaft and the ring, transmits electrical signals from the stationary ring to the rotating shaft. In addition to the electric leads, up to 4 pneumatic leads are fed through.

The DDF facilitates speeds of up to 120 revs/minute and payloads of 18000 N and 700 Nm . The use of specially coated seals reduces the unit's required breakaway torques and its constant torque. The DIN 9409-1 standardized mounting flange makes it possible to mount the rotary feed-throughs on nearly every robot.

## Accessories


(i) For the exact size of the accessories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question. You can find more detailed information on our accessory range in the "Accessories" catalog section.

## General information on the series

## Extreme ambient conditions

Please note that use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the tool life of these units and we cannot accept any liability for this reduction. However, in many cases we have a solution at hand. Please ask for details.

## DDF-031

Feed-fhrough - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation | DDF-031-S |  |
| :---: | :---: | :---: |
|  | ID | 0323033 |
| Weight | [kg] | 0.5 |
| Max. speed | [min'] | 120 |
| Max. speed | [ $\%$ / $]$ | 720 |
| Constant torque | [ Nm ] | 1 |
| Starting torque (after shutdown) | [ Nm ] | 1.5 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | \|S0 9409-1.-31.5-4-M5 |
| Energy transmission |  |  |
| Air |  | 2 x compressed air up to 10 bar |
| Electrical energy |  | 4 x electr. signals; with max. 60 V ; 1 A |

## DDF-031

## Main views



## DDF-031-S adapter plates



S Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Field wire-able connector
(8) Field wire-able connector
(25) Air feed-through

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with IS0 9409-1-31.5-4-M5 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-031 | 0323220 | 13 mm |

## DDF-040

Feed-through - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation | DDF-040-S |  |
| :---: | :---: | :---: |
|  | ID | 0323044 |
| Weight | [kg] | 0.9 |
| Max. speed | [min'] | 120 |
| Max. speed | [ $\%$ /s] | 720 |
| Constant torque | [ Nm ] | 1.5 |
| Starting torque (after shutdown) | [ Nm ] | 2.5 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | \|S0 9409-1-40-4-M6 |
| Energy transmission |  |  |
| Air |  | 2 x compressed dir up to 10 bar |
| Electrical energy |  | $4 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-040

## Main views



## DDF-040 adapter plates


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-through

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-40-4-M6 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-040 | 0323221 | 15 mm |

## DDF-040-1

Feed-through - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation |  | DDF-040-1-KS |
| :---: | :---: | :---: |
|  | ID | 0323047 |
| Weight | [kg] | 2 |
| Max. speed | [min'] | 110 |
| Max. speed | [ $\%$ / $]$ | 660 |
| Constant torque | [ Nm ] | 6 |
| Starting torque (after shutdown) | [ Nm ] | 8 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | 150 9409-7-40-4.M6 |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $6 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-040-1

## Main views



## DDF-040 adapter plates



S Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-through

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-40-4-M6 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-040 | 0323221 | 15 mm |

## DDF-050

Feed-hhrough - Rotary Feed-through for Robots


## Forces and moments



## Technical data

| Designation | DDF-050-S |  |
| :---: | :---: | :---: |
|  | ID | 0323054 |
| Weight | [kg] | 0.95 |
| Max. speed | [min'] | 120 |
| Max. speed | [ $\%$ /s] | 720 |
| Constant torque | [ Nm ] | 1.5 |
| Starting torque (after shutdown) | [ Nm ] | 2.5 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | ISO 9409-7-50-4.M6 |
| Energy transmission |  |  |
| Air |  | 2 x compressed dir up to 10 bar |
| Electrical energy |  | $4 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-050

## Main views



## DDF-050 adapter plates


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-hhrough

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-50-4-M6 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-050 | 0323222 | 15 mm |

## DDF-050-1

Feed-Ahrough - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation | DDF-050-1-KS |  |
| :---: | :---: | :---: |
|  | ID | 0323057 |
| Weight | [kg] | 2.1 |
| Max. speed | [ $\mathrm{min}^{-1}$ ] | 110 |
| Max. speed | [ $\%$ /s] | 660 |
| Constant torque | [ Nm ] | 6 |
| Starting torque (after shutdown) | [ Nm ] | 8 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | 150 9409-1-50-4-M6 |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $6 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-050-1

## Main views



S Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-through

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-50-4-M6 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-050 | 0323222 | 15 mm |

## DDF-063

Feed-through - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation | DDF-063-KS |  |
| :---: | :---: | :---: |
|  | ID | 0323067 |
| Weight | [kg] | 2.2 |
| Max. speed | [min'] | 110 |
| Max. speed | [ $\%$ / $]$ | 660 |
| Constant torque | [ Nm ] | 6 |
| Starting torque (after shutdown) | [ Nm ] | 8 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | ISO 9409-1-63-4.M6 |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $6 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-063

## Main views


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)

(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-hhrough

## DDF-063 adapter plates


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-63-4-M6 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-063 | 0323223 | 12 mm |

## DDF-080

Feed-through - Rotary Feed-through for Robots


## Forces and moments



## Technical data

| Designation | DDF-080-KS |  |
| :---: | :---: | :---: |
|  | ID | 0323090 |
| Weight | [kg] | 5.4 |
| Max. speed | [min'] | 100 |
| Max. speed | [ $\%$ / $]$ | 600 |
| Constant torque | [ Nm ] | 20 |
| Starting torque (after shutdown) | [ Nm ] | 32 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | $1509409-1 / 80-6 \cdot \mathrm{M} 8$ |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $6 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-080

## Main views



## DDF-080 adapter plates



S Air purge connection
(6) Usable cable diameter
(1) Robot-side connection
(7) Cable bushing enclosed
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(8) Cable connector enclosed
(25) Air feed-hhrough

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-80-6-M8 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | ---: |
| A-DDF-080 | 0323224 | 19.5 mm |

## DDF-080-1

Feed-through - Rotary Feed-fhrough for Robots

## Forces and moments



Technical dafa

| Designation | DDF-080-1.KS |  |
| :---: | :---: | :---: |
|  | ID | 0323091 |
| Weight | [kg] | 11 |
| Mox. speed | [min'] | 90 |
| Mox. speed | [ $\%$ s] | 540 |
| Constant torque | [ Nm ] | 42 |
| Staring torque (after shutdown) | [ Nm ] | 60 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanicl intefoce |  | $1509409 \cdot 1.80 \cdot 6 \cdot \mathrm{M} / 1$ |
| Energy transmission |  |  |
| Air |  | $4 \times$ compesesed dir up to 10 bar |
| Electrical energy |  | $10 \times$ electr. Signals; with mox. $60 \mathrm{~V} ; 1 \mathrm{~A}$ |

## DDF-080-1

## Main views


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-hhrough

## Assembly notes



## DDF-080 adapter plates


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-80-6-M8 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | ---: |
| A-DDF-080 | 0323224 | 19.5 mm |

## DDF-100

Feed-hhrough - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation | DDF-100-KS |  |
| :---: | :---: | :---: |
|  | ID | 0323110 |
| Weight | [kg] | 5.6 |
| Max. speed | [min'] | 100 |
| Max. speed | [ $\%$ / $]$ | 600 |
| Constant torque | [ Nm ] | 20 |
| Starting torque (after shutdown) | [ Nm ] | 32 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | IS0 9409-1-100-6-M ${ }^{\text {M }}$ |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $6 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-100

## Main views



## DDF-100 adapter plates


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-hhrough

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-100-6-M8 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | ---: |
| A-DDF-100 | 0323225 | 19.5 mm |

## DDF-100-1

Feed-hhrough - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation |  | DDF-100-1-KS |
| :---: | :---: | :---: |
|  | ID | 0323111 |
| Weight | [kg] | 11.3 |
| Max. speed | [min'] | 90 |
| Max. speed | [ $\%$ / $]$ | 540 |
| Constant torque | [ Nm ] | 42 |
| Starting torque (after shutdown) | [ Nm ] | 60 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | \|S0 9409-1-100-6-M8 |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $10 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-100-1

## Main views



## DDF-100 adapter plates


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-hhrough

## Assembly notes


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-100-6-M8 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | ---: |
| A-DDF-100 | 0323225 | 19.5 mm |

## DDF-125

Feed-fhrough - Rotary Feed-through for Robots


## Forces and moments



## Technical data

| Designation |  | DDF-125-KS |
| :---: | :---: | :---: |
|  | ID | 0323135 |
| Weight | [kg] | 13.5 |
| Max. speed | [min'] | 90 |
| Max. speed | [ $\%$ /s] | 540 |
| Constant torque | [ Nm ] | 42 |
| Starting torque (after shutdown) | [ Nm] | 60 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | \|S0 9409-1-125-6-M10 |
| Energy transmission |  |  |
| Air |  | 4 x compressed air up to 10 bar |
| Electrical energy |  | $10 \times$ electr. signals; with max. 60 V ; 1 A |

## Main views



S Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-through

## Assembly notes



## DDF-125 adapter plates


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-125-6-M10 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-125 | 0323226 | 25 mm |

## DDF-125-1

Feed-through - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation |  | DDF-125-1-KS |
| :---: | :---: | :---: |
|  | ID | 0323136 |
| Weight | [kg] | 21 |
| Max. speed | [min'] | 70 |
| Max. speed | [ $\%$ / $]$ | 420 |
| Constant torque | [ Nm ] | 65 |
| Starting torque (after shutdown) | [ Nm ] | 95 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | \|S0 9409-1-125-6-M10 |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $10 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-125-1

## Main views


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-hhrough

## Assembly notes



## DDF-125 adapter plates


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-125-6-M10 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-I25 | 0323226 | 25 mm |

## DDF-160

Feed-Ahrough - Rotary Feed-through for Robots

## Forces and moments



Technical data

| Designation | DDF-160-KS |  |
| :---: | :---: | :---: |
|  | ID | 0323170 |
| Weight | [kg] | 14 |
| Max. speed | [min'] | 90 |
| Max. speed | [ $\%$ / $]$ | 540 |
| Constant torque | [ Nm ] | 42 |
| Starting torque (after shutdown) | [ Nm ] | 60 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | \|S0 9409-7-160-6-M10 / ISO 9409-1-160-11-M12 |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $10 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-160

## Main views


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)
(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-through
(56) Included in scope of delivery
(81) Not included in scope of delivery

DDF-160 adapter plates


## Assembly notes


(1) Robot-side connection
(2) Too-side connection

## Adapter plate

Tool-side adapter plate with 150 9409-1-160-6-M10 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-160 | 0323227 | 19 mm |

## DDF-160-1

Feed-hhrough - Rotary Feed-through for Robots

## Forces and moments



## Technical data

| Designation |  | DDF-160-1-KS |
| :---: | :---: | :---: |
|  | ID | 0323171 |
| Weight | [kg] | 22 |
| Max. speed | [min'] | 70 |
| Max. speed | [ $\%$ / $]$ | 420 |
| Constant torque | [ Nm ] | 65 |
| Starting torque (after shutdown) | [ Nm ] | 95 |
| Rotary movement |  | Unlimited |
| Mounting of round, mechanical interface |  | ISO 9409-1-160-6-M10 |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $10 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-160-1

## Main views


$S$ Air purge connection
(1) Robot-side connection
(2) Tool-side connection
(5) Through-bore for screw connection with screw (enclosed)

## Assembly notes


(6) Usable cable diameter
(7) Cable bushing enclosed
(8) Cable connector enclosed
(25) Air feed-hhrough

## DDF-160 adapter plates


(1) Robot-side connection
(2) Tool-side connection

## Adapter plate

Tool-side adapter plate with ISO 9409-1-160-6-M10 screw connection diagram

| Designation | ID | Height |
| :--- | :--- | :--- |
| A-DDF-160 | 0323227 | 19 mm |

## DDF-SE

Feed-through - Stationary Rotary Feed-through


Sizes
080 .. 120


Max. speed
500 revs/min


Air feed-through
Up to 6x


Electrical feed-throughs Up to 8x

## Application example



Turning a component for laser welding or centrifugal drying

Drive Motor

2
(3)

DDF-SE 080 Stationary Rotary Feedthrough
(4) PZB 2-Finger Parallel Gripper

## Stationary Feed-through

Pneumatic and electric rotary feed-through for stationary use

## Area of applisation

For use on rotary indexing tables and rotating grippers

## Your advantages and benefits

Combined air and elecrrical feed-through
for extensive supply to your gripping system
Standardized shaft end
for easy gear assembly
Up to 500 1/min
your gripping system will be ensured a reliable pneumatics and electrics supply, even with fast rotary movements


## General information on the series

Pneumatics feed-through
Up to six feed-hhroughs with a max. of 10 bar
Electrical feed-throughs
Via slip rings, up to eight electrical signals with max. 60 V and 1 A
Material
The rotary feed-through is made from a high-strength, hard-coated aluminum alloy. The shaft is made from hardened steel.

[^15]
## DDF-SE

## Feed-through - Stationary Rotary Feed-through

## Sectional diagram



Slip Ring
as electrical feed-through for up to eight signals

2 Center Bore
end.toend for workpieces, sensor systems and actuators

3 Pneumatics Feed-through
to supply grippers, linear units and other actuators
(4) Ball Bearings
to absorb strong forces and large moments

## Function description

The DDF-SE facilitates rotation of your tool by more than $360^{\circ}$, without hoses and cables twisting around the axis. Integrated slip ring contacts reliably supply the tool with power, even ot high speeds ( 500 min' ${ }^{\prime}$ ). In addition to the electric leads, up to six pneumatic leads ore fed through.
The drive motor is flange-mounted via a standardized shaft end with keyway. In order to minimize the offset between the motor and the DDF-SE, a coupling must be provided.

## Accessories

Fittings

Accessories from SCHUNK -
the suitable supplement for
maximum functionality,
reliability and performance
of all automation modules.

(i) For the exact size of the accessories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question. You can find more detailed information on our accessory range in the "Accessories" catalog section.

## General information on the series

## Extreme ambient conditions

Please note that use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the tool life of these units and we cannot accept any liability for this reduction. However, in many cases we have a solution at hand. Please ask for details.

## DDF-080 SE

Feed-through - Stationary Rotary Feed-through


## Forces and moments



## Technical data

| Designation | DDF-080 SE |  |
| :---: | :---: | :---: |
|  | ID | 0323280 |
| Weight | [kg] | 3.3 |
| Max. speed | [min'] | 500 |
| Max. acceleration | [m/s ${ }^{2}$ ] | 20 |
| Constant torque | [ Nm ] | 4 |
| Starting torque (after shutdown) | [ Nm ] | 5 |
| Rotary movement |  | Unlimited |
| Mounting |  | Threaded holes for centering sleeves |
| Energy transmission |  |  |
| Air |  | $4 \times$ compressed air up to 10 bar |
| Electrical energy |  | $6 \times$ electr. signals; with max. 60 V ; 1 A |

## DDF-080 SE

## Main views



## Life span of seals



Life span of seals (at pressure of 6 bar)
Example
DDF-080 SE is driven constantly of $150 \mathrm{~min}^{-1}$ in 3-shift operation (24 hours).
Life span of seals
After 1500 hours the seals should be changed.
(Seal set is available from SCHUNK)

| Designation | ID |
| :--- | :--- |
| DSA for DDF-080 SE | 0370280 |

## DDF-120 SE

Feed-through - Stationary Rotary Feed-through


## Forces and moments



## Technical data

| Designation |  | DDF-120 SE |
| :--- | :--- | ---: |
|  | ID | 0323285 |
| Weight | $[\mathrm{kg}]$ | 9 |
| Max. speed | $\left[\mathrm{min}^{1}\right]$ | 300 |
| Max. acceleration | $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ | 20 |
| Constant torque | $[\mathrm{Nm}]$ | 13 |
| Starting torque (after shutdown) | $[\mathrm{Nm}]$ | 20 |
| Rotary movement |  | Unlimited |
| Mounting |  |  |
| Energy transmission |  |  |
| Air |  |  |
| Electrical energy |  | $8 \times$ compressed air up to 10 bar |

## DDF-120 SE

## Main views


(1) Connection of module
(2) Tool-side connection
(5) Through-bore for screw connection with screw
(20) Connection for electrical feed-through
(21) Drive connection
(25) Air feed-through

## Life span of seals



Life span of seals (at pressure of 6 bar)
Example
DDF-120 SE is driven constantly at $175 \mathrm{~min}^{-1}$ in
3-shift operation (24 hours).
Life span of seals
After 1300 hours the seals should be
changed. (Seal set is available from SCHUNK)

| Designation | ID |
| :--- | :--- |
| DSA for DDF-120 SE | 0370280 |

Protecting


| Series | Size | Page |
| :---: | :---: | :---: |
| Collision and Overload Protection |  |  |
| OPS |  | 244 |
| OPS | 080 | 248 |
| OPS | 100 | 252 |
| OPS | 160 | 256 |
| OPS | 200 | 260 |
| OPS+ |  | 264 |
| OpS+ | 063 | 268 |
| OpS+ | 081 | 272 |
| OpS+ | 101 | 276 |
| OPR |  | 280 |
| OPR | 061 | 284 |
| OPR | 081 | 288 |
| OPR | 101 | 292 |
| OPR | 131 | 296 |
| OPR | 176 | 300 |
| OPR | 221 | 304 |



Sizes
080 .. 200


Triggering force $\mathbf{F}_{1}$ 100 N .. 22400 N


Triggering forque $\mathrm{Mx}_{\mathrm{x}}$ $1.2 \mathrm{Nm} . .2140 \mathrm{Nm}$


Triggering forque $\mathrm{M}_{\mathrm{y}}$ $1.2 \mathrm{Nm} . .2140 \mathrm{Nm}$


Triggering forque $\mathrm{M}_{\mathbf{z}}$ 2.1 Nm .. 1850 Nm

## Application example

Assembly unit for intermediate sleeves with a variety of diameters. The unit is protected by an anti-collision device to prevent damage.

(1) PFH 30 2-Finger Parallel Gripper with workpiece-specific gripper fingers

OPS-100 Collision and Overload Protection

## Collision and Overload Protection

Collision and overload protection for protecting robots and handling units against damage resulting from collisions or overlood conditions.

## Area of application

Standard solution for all robot applications whereby the robot, the tool or the workpiece are to be protected in the event of a collision

## Your advantages and benefits

Triggering force and torque can be adjusted via the operating pressure
for optimum protection of your components

## Integrated monitoring

for signal transmission in the event of a collision, whereby the robot can be stopped

## ISO adapter plates as an option

for easy mounting to most types of robots


## General information on the series

Working principle
Integrated cylinder piston
Housing material
Aluminum, anodized

## Actuation

Pneumatic, with filtered compressed air ( $10 \mu \mathrm{~m}$ ): dry or lubricated

## Maintenance

Maintenance-free
Assembly position
Optional

## Ambient temperature

From $5^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Scope of delivery
Right-angle coupling with 5 m cable, operating manual, maintenance instructions, manufacturer's declaration

## Accessories

Adapter plates for mounting directly to flange ISO 9409-IA...
Warranty
24 months

## OPS

Proteding - Collision and Overload Protedion

## Sectional diagram


(1) Housing
weight-reduced through the use of a hardanodized, high-strength aluminum alloy

2 Sensor System
for reliable electronic monitoring

3 Drive
pneumatic for easy adjustment of the sensitivity

4 Centering and Mounting Options
for easy mounting of your handling device

## Function description

In the event of a collision, the tool plate deflects while simultaneously actuating the system's emergency stop mechanism. After deflection, the OPS can be manually reset and the system can be brought back to its original position.

## Accessories


(i) For the exact size of the accessories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question. You can find more detailed information on our accessory range in the "Accessories" catalog section.

## General information on the series

## Extreme ambient conditions

Please note that use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the tool life span of these units and we cannot accept any liability for this reduction. However, in many cases we have a solution at hand. Please ask for details.

## Proteating - Collision and Overload Protedion



## Forces and moments



## Technical data

| Designation | OPS-080 |  |  |
| :---: | :---: | :---: | :---: |
|  | ID | 0321125 |  |
| Axial deflection | [mm] | 12 |  |
| Angular deflection | ${ }^{\circ} \mathrm{B}$ | $\pm 12$ |  |
| Min. ambient temperature | $\left[^{\circ} \mathrm{C}\right]$ | 5 |  |
| Max. ambient temperature | $\left[{ }^{\circ} \mathrm{C}\right]$ | 60 |  |
| Sensitivity | [mm] | $<0.1$ | Sensitivity, center of tool plate, axial |
| Repeat accuracy | [mm] | $\pm 0.02$ | Repeat accuracy, center of tool plate |
| Rotational repeat accuracy | [min] | $\pm 5$ |  |
| Operating pressure range | [bar] | 0.5-3.0 |  |
| Weight | [kg] | 0.4 |  |
| Supply voltage | [VDC] | 10 ... 30 | Residual ripple max. 10 \% |
| Max. current input without lood | [mA] | 6 |  |
| Max. voltage drop | [V] | 3.5 |  |
| Output (switching) |  | PNP |  |
| Max. output current - resistive load | [mA] | 180 (short circuit proof) |  |

## Main views


(1) Robot-side connection
(2) Tool-side connection
(8) Cable connector enclosed

## Output circuit diagram



## Proteding - Collision and Overload Protedion

## Calculating the intake air pressure (P) for OPS-080



Please use the following formulas or diagrams for a rough calculation of the intake air pressure.
P: $\quad$ Pressure in bar
$F_{y_{i}} ; F_{i}$ : Force from the mass and the acceleration calculated in $N$
$M_{y}, M_{i}$ : Moment from the force and the lever arm calculated in Nm
D : $\quad$ Attachment length in m
The calculated pressure P must be within the operating pressure range of the OPS.


Type of load: Vertical $\left(M_{y}\right)$


Type of load: Axial ( $F_{z}$ )

## Adapter plate A50


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-080 directly to a flange in accordance with ISO 9409-1-A50

| Designation | ID |
| :--- | :--- |
| A-OPSS-080-ISO-A5O-R | 0321114 |

## Adapter plate A63


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-080 directly to a flange in accordance with ISO 9409-1-A63

| Designation | ID |
| :--- | :--- |
| A-OPS-080-SO-A63-R | 0321115 |

## Proteating - Collision and Overload Protedion

## Forces and moments



## Technical data

| Designation |  | 0 OPS-100 |  |
| :--- | :--- | ---: | :--- |
|  | ID | 0321130 |  |
| Axial deflection | $[\mathrm{mm}]$ | 14 |  |
| Angular deflection | $\left[{ }^{\circ}\right]$ | $\pm 12$ |  |
| Min. ambient temperature | $\left[{ }^{\circ} \mathrm{C}\right]$ | 5 |  |
| Max. ambient temperature | $\left[{ }^{\circ} \mathrm{C}\right]$ | 60 |  |
| Sensitivity | $[\mathrm{mm}]$ | $\pm 0.1$ | Sensitivity, center of tool plate, axial |
| Repeat accuracy | $[\mathrm{mm}]$ | $\pm 0.02$ | Repeat accuracy, center of tool plate |
| Rotational repeat accuracy | $[\mathrm{min}]$ | $\pm 5$ |  |
| Operating pressure range | $[\mathrm{bar}]$ | $0.5-5.0$ |  |
| Weight | $[\mathrm{kg}]$ | 0.7 |  |
| Supply voltage | $[\mathrm{VDC}]$ | $10 . .30$ | Residual ripple max. $10 \%$ |
| Max. current input without load | $[\mathrm{mA}]$ | 6 |  |
| Max. voltage drop | $[\mathrm{V}]$ | 3.5 |  |
| Output (switching) |  | PNP |  |
| Max. output current - resistive load | $[\mathrm{mA}]$ | 180 (short circuit proof) |  |

## OPS-100

## Main views


(1) Robot-side connection
(2) Tool-side connection
(8) Cable connector enclosed

## Output circuit diagram



## OPS-100

## Proteding - Collision and Overload Protedion

## Calculating the intake air pressure (P) for OPS-100



Please use the following formulas or diagrams for a rough calculation of the intake air pressure.
P: $\quad$ Pressure in bar
$F_{y y} ; F_{i}$ : Force from the mass and the acceleration calculated in $N$
$M_{y}, M_{i}$ : Moment from the force and the lever arm calculated in Nm
D : $\quad$ Attachment length in m
The calculated pressure P must be within the operating pressure range of the OPS.


Type of load: Axial ( $\mathrm{F}_{2}$ )

别


Type of load: Vertical ( $M_{y}$ )


Type of load: Torsional $\left(M_{z}\right)$

## OPS-100

Proteding - Collision and Overload Protedion

## Adapter plate A50


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-100 directly to a flange in accordance with ISO 9409-1-A50

| Designation | ID |
| :--- | :--- |
| A-OPS-100-ISO-A50-R | 0321122 |

## Adapter plate A63


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-100 directly to a flange in accordance with ISO 9409-1-A63

| Designation | ID |
| :--- | :--- |
| A-OPS-100-ISO-A63-R | 0321123 |

## Adapter plate $\mathbf{A 8 0}$


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-100 directly to a flange in accordance with ISO 9409-1-A80

| Designation | ID |
| :--- | :--- |
| A-OPS-100-SSO-A8O-R | 0321116 |

OPS-160
Proteding - Collision and Overload Protedion


## Forces and moments



Mx max. 80 Nm
My max. 80 Nm
$\mathrm{F}_{1}$ max. 4500 N

## Technical data

| Designation | OPS-160 |  |  |
| :---: | :---: | :---: | :---: |
|  | ID 0321135 |  |  |
| Axial deflection | [mm] | 8 |  |
| Angular deflection | [ ${ }^{\circ}$ ] | $\pm 5$ |  |
| Min. ambient temperature | $\left[{ }^{\circ} \mathrm{C}\right]$ | 5 |  |
| Max. ambient temperature | [ $\left.{ }^{\circ}\right]$ | 60 |  |
| Sensitivity | [mm] | $<0.2$ | Sensitivity, center of tool plate, axial |
| Repeat accuracy | [mm] | $\pm 0.02$ | Repeat accuracy, center of tool plate |
| Rotational repeat accuracy | [min] | $\pm 5$ |  |
| Operating pressure range | [bar] | 1-5 |  |
| Weight | [kg] | 4.3 |  |
| Supply voltage | [VDC] | 10 ... 30 | Residual ripple max. 10 \% |
| Max. current input without load | [mA] | 6 |  |
| Max. voltage drop | [V] | 3.5 |  |
| Output (switching) |  | PNP |  |
| Max. output current - resistive load | [mA] | 180 (short circuit proof) |  |

## OPS-160

## Main views


(1) Robot-side connection
(2) Tool-side connection
(8) Cable connector enclosed

## Output circuit diagram



## OPS-160

## Proteding - Collision and Overload Protedion

## Calculating the intake air pressure (P) for OPS-160



Please use the following formulas or diagrams for a rough calculation of the intake air pressure.
P: $\quad$ Pressure in bar
$F_{y y} ; F_{i}$ : Force from the mass and the acceleration calculated in $N$
$M_{y}, M_{i}$ : Moment from the force and the lever arm calculated in Nm
D : $\quad$ Attachment length in m
The calculated pressure P must be within the operating pressure range of the OPS.


Type of load: Vertical $\left(M_{y}\right)$


Type of load: Axial ( $\mathrm{F}_{2}$ )

## OPS-160

Proteding - Collision and Overload Protedion

## Adapter plate A 100


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-160 directly to a flange in accordance with ISO 9409-1-A100 Designation ID

A-OPS-160-SO-A100-R 0321224

## Adapter plate A125


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-160 directly to a flange in accordance with ISO 9409-1-A125

| Designation | ID |
| :--- | :--- |
| A-OPS-160-ISO-A125-R | 0321117 |

## Proteating - Collision and Overload Protedion



## Forces and moments



## Technical data

| Designation |  | OPS-200 | OPS-200-VS |  |
| :---: | :---: | :---: | :---: | :---: |
|  | ID | 0321140 | 0321141 |  |
| Axial deflection | [mm] | 9.5 | 9.5 |  |
| Angular deflection | [ ${ }^{\circ}$ ] | $\pm 4$ | $\pm 4$ |  |
| Rotational deflection | [ ${ }^{\circ}$ ] | 360 | $\pm 45$ |  |
| Min. ambient temperature | [ $\left.{ }^{\circ} \mathrm{C}\right]$ |  | 5 |  |
| Max. ambient temperature | [ $\left.{ }^{\circ} \mathrm{C}\right]$ |  | 60 |  |
| Sensitivity | [mm] | $<0.3$ | $<0.3$ | Sensitivity, center of tool plate, axial |
| Repeat accuracy | [mm] | $\pm 0.05$ | $\pm 0.05$ | Repeat accuracy, center of tool plate |
| Rotational repeat accuracy | [min] | $\pm 5$ | $\pm 5$ |  |
| Operating pressure range | [bar] | 1-6 | 1-6 |  |
| Weight | [kg] | 7.0 | 7.0 |  |
| Supply voltage | [VDC] | $10 . . .30$ | $10 . .30$ | Residual ripple max. 10 \% |
| Max. current input without load | [mA] | 6 | 6 |  |
| Max. voltage drop | [V] | 3.5 | 3.5 |  |
| Output (switching) |  | PNP | PNP |  |
| Max. output current - resistive load | [mA] | 180 (short circuit proof) | 180 (short circuit proof) |  |

(i) The OPS-200-VS version is equipped with a rotational travel limitation device

## Main views


(1) Robot-side connection
(2) Tool-side connection
(8) Cable connector enclosed

## Output circuit diagram



## OPS-200

## Proteating - Collision and Overload Protedion

## Calculating the intake air pressure (P) for OPS-200



Please use the following formulas or diagrams for a rough calculation of the intake air pressure.
P: $\quad$ Pressure in bar
$F_{y_{i}} ; F_{i}$ : Force from the mass and the acceleration calculated in $N$
$M_{y}, M_{i}$ : Moment from the force and the lever arm calculated in Nm
D : $\quad$ Attachment length in m
The calculated pressure P must be within the operating pressure range of the OPS.


Type of load: Vertical $\left(M_{y}\right)$


Type of load: Axial ( $\mathrm{F}_{2}$ )

## Adapter plate A 125


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-200 directly to a flange in accordance with ISO 9409-1-Al25

| Designation | ID |
| :--- | :--- |
| A-OPS-200-ISO-AI25-R | 0321126 |

## Adapter plate A160


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS-200 directly to a flange in accordance with ISO 9409-1-A160

| Designation | ID |
| :--- | :--- |
| A-OPS-200-SO-A160-R | 0321118 |

## OPS+

Proteding - Collision and Overload Protedion


Sizes
063 .. 101


Triggering force $\mathbf{F}_{I}$
100 N .. 2000 N


Triggering forque $\mathrm{Mx}_{\mathrm{x}}$
1.2 Nm .. 27.5 Nm


Triggering forque $\mathrm{M}_{\mathbf{y}}$ 1.2 Nm .. 27.5 Nm


Triggering forque $\mathbf{M}_{\mathbf{z}}$ 2.1 Nm .. 45 Nm

## Application example

Assembly unit for intermediate sleeves with a variety of diameters. The unit is protected by an anti-collision device to prevent damage.

(1)

PFH 30 2-Finger Parallel Gripper with workpiece-specific gripper fingers

2
OPS-101 Collision and Overload Protection

## Collision and Overload Protection

Collision and overload protection for protecting robots and handling units against damage resulting from collisions or overload conditions.

## Area of application

Standard solution for all robot applications whereby the robot, the tool or the workpiece are to be protected in the event of a collision

## Your advantages and benefits

Triggering force and torque can be adjusted via the operating pressure
for optimum protection of your components

## Integrated monitoring

for signal transmission in the event of a collision, whereby the robot can be stopped

## ISO adapter plates as an option

for easy mounting to most types of robots


## Optimized design

Design changes to the internal structure have increased the maximum possible deflection angle from $4^{\circ}$ to $8^{\circ}$, so that there is now more space to make compensating movements in the event of a collision. We improved the mounting of the sleeve with which the housing is sealed from the back of the flange; we also equipped the system with an easy-to-assemble plug that is easier to repair when damaged.

## General information on the series

| Working principle | Ambient temperature |
| :--- | :--- |
| Integrated cylinder piston | From $5^{\circ} \mathrm{C}$ t $60^{\circ} \mathrm{C}$ |
| Housing material | Scope of delivery |
| Aluminum, anodized | Right-angle coupling with 5 m cable, operating manual, maintenance instructions, |
| Actuation | manufacturer's declaration |
| Pneumatic, with filtered compressed air $(10 ~ \mu \mathrm{~m})$ : dry or lubricated | Accessories |
| Maintenance | Adapter plates for mounting directly to flange ISO 9409-1A... |
| Maintenance-free | Warranty |
| Assembly position | 24 months |
| Optional |  |

## OPS+

## Proteating - Collision and Overload Protedion

## Sectional diagram



Housing
weight-optimized through the use of a hardened epoxy-coated, highly robust aluminum alloy

2 Drive
pneumatic for ease of setting sensitivity

## Function description

In the event of a collision, the tool plate deflects while simultaneously actuating the system's emergency stop mechanism. After deflection, the OPS can be manually reset and the system can be brought back to its original position.

## Accessories


(i) For the exact size of the accesssories, the availability for this size and the designation and ID, please refer to the additional views at the end of the size in question. You can find more detailed information on our accessory range in the "Accessories" catalog section.

## General information on the series

## Extreme ambient conditions

Please note that use in extreme ambient conditions (e.g. in the coolant zone, in the presence of abrasive dust) can significantly reduce the tool life span of these units and we cannot accept any liability for this reduction. However, in many cases we have a solution at hand. Please ask for details.

OPS+063
Proteding - Collision and Overload Protedion


## Forces and moments



## Technical data

| Designation | OPS+063 |  |  |
| :---: | :---: | :---: | :---: |
|  | ID | 0321230 |  |
| Axial deflection | [mm] | 10 |  |
| Angular deflection | [ ${ }^{\circ}$ | 14 |  |
| Torsional displacement | [ ${ }^{\circ}$ | 360 |  |
| Max. ambient temperature | $\left[{ }^{\circ} \mathrm{C}\right]$ | 5-60 |  |
| Material |  | d anodized |  |
| Sensitivity | [mm] | $<0.1$ | Sensitivity, center of tool plate, axial |
| Repeat accuracy | [mm] | $\pm 0.02$ | Repeat accuracy, center of tool plate |
| Rotational repeat accuracy | [min] | $\pm 5$ |  |
| Operating pressure range | [bar] | 1-6 |  |
| Weight | [kg] | 0.3 |  |
| Max. paylood | [kg] | 2 |  |
| Normal voltage | [VDC] | 24 |  |
| Operating voltage UB triggered/locked ot RL $=\infty$ | [VDC] | $22 . . .26$ |  |
| Nominal current | [mA] | $0 /<8$ |  |
| Nominal output voltage UA ot RL= | [V] | $\geq 23.2$ |  |
| Nominal output voltage UA at $\mathrm{RL} \geq 2 \mathrm{k}$ | [V] | $\geq 21.0$ |  |
| Nominal output current ot RL $\geq 2 \mathrm{k}$ | [mA] | $\leq 12.0$ |  |
| Reverse-polarity protected |  | Yes |  |
| Short circuit proof |  | Yes |  |

## OPS+063

## Main views


(1) Robot-side connection
(2) Tool-side connection
(8) Cable connector enclosed

## OPS+063

## Proteding - Collision and Overload Protedion

## Calculating the intake air pressure (P) for OPS+063



Please use the following formulas or diagrams for a rough calculation of the intake air pressure.
P: $\quad$ Pressure in bar
$F_{y_{i}} ; F_{i}$ : Force from the mass and the acceleration calculated in $N$
$M_{y}, M_{i}$ : Moment from the force and the lever arm calculated in Nm
D : $\quad$ Attachment length in m
The calculated pressure P must be within the operating pressure range of the OPS.


Type of load: Vertical $\left(M_{Y}\right)$


Type of load: Axial ( $\mathrm{F}_{\mathrm{z}}$ )

## Adapter plate A31,5


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS+063 directly to a flange in accordance with ISO 9409-1-A31,5

| Designation | ID |
| :--- | :--- |
| A-OPS-O63-ISO-A3I-R | 0321137 |

## Adapter plate A50


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS+063 directly to a flange in accordance with ISO 9409-1-A50

| Designation | ID |
| :--- | :--- |
| A-OPS-063-ISO-A5O-R | 0321124 |

OPS+081
Proteding - Collision and Overload Protection


## Forces and moments



## Technical data

| Designation | OPS+081 |  |  |
| :---: | :---: | :---: | :---: |
|  | ID | 0321231 |  |
| Axial deflection | [mm] | 12 |  |
| Angular deflection | [ ${ }^{\circ}$ ] | 14 |  |
| Torsional displacement | ${ }^{\circ}$ ] | 360 |  |
| Max. ambient temperature | $\left[{ }^{\circ} \mathrm{C}\right]$ | 5-60 |  |
| Material |  | anodized |  |
| Sensitivity | [mm] | $<0.1$ | Sensitivity, center of tool plate, axial |
| Repeat accuracy | [mm] | $\pm 0.02$ | Repeat accuracy, center of tool plate |
| Rotational repeat accuracy | [min] | $\pm 5$ |  |
| Operating pressure range | [bar] | 1-6 |  |
| Weight | [kg] | 0.6 |  |
| Max. paylood | [kg] | 4 |  |
| Normal voltage | [VDC] | 24 |  |
| Operating voltage UB triggered/locked ot RL $=\infty$ | [VDC] | $22 . . .26$ |  |
| Nominal current | [mA] | $0 /<8$ |  |
| Nominal output voltage UA at RL= $\infty$ | [V] | $\geq 23.2$ |  |
| Nominal output voltage UA at $\mathrm{RL} \geq 2 \mathrm{k}$ | [V] | $\geq 21.0$ |  |
| Nominal output current ot RL $\geq 2 \mathrm{k}$ | [mA] | $\leq 12.0$ |  |
| Reverse-polarity protected |  | Yes |  |
| Short circuit proof |  | Yes |  |

## OPS+081

## Main views



©
(1) Robot-side connection
(2) Tool-side connection
(8) Cable connector enclosed

## OPS+081

## Proteating - Collision and Overload Protedion

## Calculating the intake air pressure (P) for OPS+081



Please use the following formulas or diagrams for a rough calculation of the intake air pressure.
P: $\quad$ Pressure in bar
$F_{y y} ; F_{i}$ : Force from the mass and the acceleration calculated in $N$
$M_{y}, M_{i}$ : Moment from the force and the lever arm calculated in Nm
D : $\quad$ Attachment length in m
The calculated pressure P must be within the operating pressure range of the OPS.


Type of load: Vertical $\left(M_{y}\right)$


Type of load: Axial ( $\mathrm{F}_{2}$ )
-

别


Type of load: Torsional ( $M_{z}$ )

## OPS+081

Proteding - Collision and Overload Protedion

## Adapter plate A50


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS+081 directly to a flange in accordance with ISO 9409-1-A50
Designation ID
A-OPS-08O-ISO-A5O-R 0321114

## Adapter plate A63


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS+081 directly to a flange in accordance with ISO 9409-1-A63

| Designation | ID |
| :--- | :--- |
| A-OPS-080-SO-A63-R | 0321115 |

## Forces and moments



## Technical data

| Designation | OPS +101 |  |  |
| :---: | :---: | :---: | :---: |
|  | ID | 0321232 |  |
| Axial deflection | [mm] | 14 |  |
| Angular deflection | [ ${ }^{\circ}$ ] | 16 |  |
| Torsional displacement | ${ }^{\circ}$ ] | 360 |  |
| Max. ambient temperature | $\left[{ }^{\circ} \mathrm{C}\right]$ | 5-60 |  |
| Material |  | anodized |  |
| Sensitivity | [mm] | $<0.1$ | Sensitivity, center of tool plate, axial |
| Repeat accuracy | [mm] | $\pm 0.02$ | Repeat accuracy, center of tool plate |
| Rotational repeat accuracy | [min] | $\pm 5$ |  |
| Operating pressure range | [bar] | 1-6 |  |
| Weight | [kg] | 1.2 |  |
| Max. paylood | [kg] | 8 |  |
| Normal voltage | [VDC] | 24 |  |
| Operating voltage UB triggered/locked at RL $=\infty$ | [VDC] | $22 . . .26$ |  |
| Nominal current | [mA] | $0 /<8$ |  |
| Nominal output voltage UA at RL= $\infty$ | [V] | $\geq 23.2$ |  |
| Nominal output voltage UA at $\mathrm{RL} \geq 2 \mathrm{k}$ | [V] | $\geq 21.0$ |  |
| Nominal output current ot RL $\geq 2 \mathrm{k}$ | [mA] | $\leq 12.0$ |  |
| Reverse-polarity protected |  | Yes |  |
| Short circuit proof |  | Yes |  |

## Main views


(1) Robot-side connection
(2) Tool-side connection
(8) Cable connector enclosed

## OPS+ 101

Proteding - Collision and Overload Protedion

## Calculating the intake air pressure (P) for OPS+ 101



Please use the following formulas or diagrams for a rough calculation of the intake air pressure.
P: $\quad$ Pressure in bar
$F_{y y} ; F_{i}$ : Force from the mass and the acceleration calculated in $N$
$M_{y}, M_{i}$ : Moment from the force and the lever arm calculated in Nm
D : $\quad$ Attachment length in m
The calculated pressure P must be within the operating pressure range of the OPS.


Type of load: Axial ( $\mathrm{F}_{2}$ )
Oporating picsoric tarige



Type of load: Vertical ( $M_{y}$ )


Type of load: Torsional $\left(M_{z}\right)$

## OPS+101

Proteding - Collision and Overload Protedion

## Adapter plate A50


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS+101 directly to a flange in accordance with ISO 9409-1-A50

| Designation | ID |
| :--- | :--- |
| A-OPS-100-ISO-A50-R | 0321122 |

## Adapter plate A63


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS+101 directly to a flange in accordance with ISO 9409-1-A63

| Designation | ID |
| :--- | :--- |
| A-OPS-100-ISO-A63-R | 0321123 |

## Adapter plate $\mathbf{A 8 0}$


(1) Robot-side connection
(2) Tool-side connection

For mounting the OPS +101 directly to a flange in accordance with ISO 9409-1-A80
Designation
ID
A-OPS-100-ISO-A8O-R 0321116


[^0]:    * 250 VAC grounding done by customer
    ** 500 VAC grounding done by customer

[^1]:    * 250 VAC grounding done by customer
    ** 500 VAC grounding done by customer

[^2]:    * 250 VAC grounding done by customer

[^3]:    * 250 VAC grounding done by customer

[^4]:    * 250 VAC grounding done by customer
    ${ }^{* *} 500 \mathrm{VAC}$ grounding done by customer

[^5]:    * 250 VAC grounding done by customer

[^6]:    * 250 VAC grounding done by customer

[^7]:    * 250 VAC grounding done by customer

[^8]:    * 250 VAC grounding done by customer
    ** 500 VAC grounding done by customer

[^9]:    (12) Head side
    (13) Adapter side
    (14) Male connector
    (15) Female connector

[^10]:    (12) Head side
    (13) Adapter side
    (14) Male connector
    (15) Female connector

[^11]:    (12) Head side
    (13) Adapter side
    (14) Male connector
    (15) Female connector

[^12]:    (12) Head side
    (13) Adapter side
    (14) Male connector
    (15) Female connector

[^13]:    For proximity switch INW 80/S, ID 0301508

[^14]:    (25) Fluid feed-through
    (26) Electrical signal feed-hhrough
    (90) Connection for pneumatic hose

[^15]:    Assembly position
    Optional
    Operating temperature
    From $5^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
    Scope of delivery
    Centering sleeves for mounting and direct connection, operating manual,
    maintenance instructions, manufacturer's declaration
    Warranty
    24 months

