# **Hochelastische GE-Kupplungen**











#### Katalog Nr. D 860

Alle Angaben über GE-Kupplungen in Druckschriften älteren Datums sind mit dem Erscheinen dieser Druckschrift nur noch bedingt gültig.

Maß- und Konstruktionsänderungen behalten wir uns vor.

Stromag-Produkte entsprechen dem Qualitätsstandard nach DIN ISO 9001.

#### Catalogue No. D 860

This catalogue for GE-couplings cancels and replaces all former editions.

We reserve the right to modify the dimensions and constructions.

Stromag products comply with the Quality Standard to DIN ISO 9001.

#### Inhalt Content Stromag GE-Kupplungen $^{2-4}$ Stromag GE-couplings 2 - 4Klassifikationsvorschriften 5 Classification regulations 5 Montagehinweise und Lieferumfang 6 Mounting hints and delivery extent 6 7 Hinweise zur Auswahl der Kupplungsgröße Hints for selection of coupling size 7 8-11 8-11 Die Kennwerte der GE-Kupplung Characteristics of the GE-coupling Leistungstabelle 12-13 Output table 12-13 GE - Baureihen 14-16 GE -Series 14-16 Baureihe GEF...R 17 Series GEF...R 17 Baureihe GEF...R mit SAE-Anschluß 18 Series GEF...R with SAE-connection 18 Baureihe GET...R mit Tellerflansch 19 Series GET...R with plate-shaped flange 19 Baureihe GEW...R Series GEW...R 20 20 Series GEF...RF Baureihe GEF...RF 21 21 Series GEF...RFW Baureihe GEF...RFW 22 22 Baureihe GEF...RFSW 23 Series GEF...RFSW 23 GE-Schaltkupplungen 24 GE-Clutch/Coupling Units 24 Umrechnungsfaktoren 25 Conversion Factors 25 Questionnaire Fragebogen 26 26



#### Das GE-Konzept

Die Stromag GE-Kupplung ist eine hochelastische Kupplung, für hohe übertragbare Drehmomente bei besonders kompakter Bauweise und günstigem Gewicht, geeignet für dieselmotorische und elektrische Antriebe.

Die Baureihe erstreckt sich über einen Nenndrehmomentenbereich von 2000 bis 270000 Nm.

Sondergrößen bis zu 450000 Nm sind möglich.

Die Stromag GE-Kupplung ermöglicht die einfache Verbindung eines Flansches, z.B. Schwungrad, mit einer zylindrischen Welle. Das Drehmoment wird von der Antriebsseite über sternförmig angeordnete Einzelelemente auf die Abtriebsseite übertragen. Die einzelnen Elemente sind radial ein- und ausbaubar, ohne daß die vohandene Maschine verschoben werden muß, Bild 1.

#### The GE-principle

The Stromag GE—Coupling is a highly—flexible coupling; its special advantages are the transmission of high torques, the compact construction and the low weight, suitable for diesel—engine and electric drives.

The nominal torque range of this series is 2000 to 270000  $\ensuremath{\mathrm{Nm}}$ 

Special designs up to 450000 Nm are also available.

The Stromag GE—coupling allows the simple connection of a flange, e.g. flywheel; with a cyl. shaft. The torque is transmitted from the input side to the output side passing the radially arranged single elements. The single elements can be mounted and dismantled radially without having to shift the existing machine, see fig. 1.

# Flansch— / Wellenverbindung Flange / shaft connection



#### Einsatzgebiete

Die Stromag GE-Kupplung ist konzipiert für den Einsatz an Kolbenmaschinen. Sie kann mit ihrem Außenteil direkt an das Schwungrad eines Dieselmotors angeflanscht werden. Bei entsprechender Ausführung lassen sich auch zwei Wellen oder zwei Flansche miteinander verbinden.

Die Einsatzgebiete sind der Motoren- und Schiffsbau, Eisenbahn- und Baumaschinenantriebe, Diesel- und Gasaggregate, Zementmühlen sowie Pumpen und Verdichter.

#### Hinweise für den Konstrukteur

Die Stromag GE-Kupplung weist ausschließlich Metallteile aus Stahl oder GGG auf. Durch die Fertigung aus Drehteilen ergibt sich eine hohe Laufruhe.

Die einzelnen Gummielemente sind radial montierbar und über Zylinderstifte mit den Kupplungsteilen verbunden. Das zu übertragende Drehmoment bewirkt in den Elementen eine Zugbelastung, die durch einvulkanisierte Nylon-Gewebebahnen aufgenommen wird.

Die Stromag GE-Kupplung eignet sich aufgrund der Verwendung von Gummielementen mit extrem zugfestem Gewebe zur Aufnahme großer Stoßdrehmomente. Das Bruchdrehmoment liegt weit über dem Nenndrehmoment. Große Wechseldrehmomente können zugelassen werden, weil die Dämpfungswärme gut über die Freiräume zwischen den Einzelelementen abgeführt werden kann. Außerdem wird eine gute Körperschall-Isolierung erreicht.

Hohe Laufruhe durch Kupplungsbetrieb und geringe umlaufende Radialkräfte sind durch die Auswahl und Anordnung der Einzelelemente nach ihrer Zugkennlinie möglich.

Die GE-Kupplung ist im Temperaturbereich von  $-50^{\circ}\text{C}$  bis  $+80^{\circ}\text{C}$  einsetzbar. Die elastischen Elemente können infolge Dämpfungsarbeit gegenüber der Umgebungstemperatur höhere Temperaturen erreichen. Für hohe Umgebungstemperaturen ist aus dem Diagramm der Temperaturfaktor zu ermitteln und zu beachten. Bei Verkleidung der Kupplung mit einer Schutz— oder Abdeckhaube muß dieses berücksichtigt oder für ausreichende Belüftung und Wärmeabfuhr gesorgt werden.

Die Stromag GE-Kupplung ist mit Abnahme nach EN 10204 gemäß den Vorschriften der Klassifikationsgesellschaften lieferbar.

#### Type of application

The Stromag GE—coupling is designed for application with piston engines. With its outer part it can be flanged directly to the flywheel of a diesel—engine. The connection of two shafts or two flanges is also possible when executed accordingly.

Applications: Engine and shipbuilding industry, railway and construction machine drives, diesel and gas sets, cement mills as well as pumps and compressors.

#### Hints for the designer

All metal parts of the Stromag GE-coupling are made of steel or GGG. Very quiet running is achieved by fabrication from turned parts.

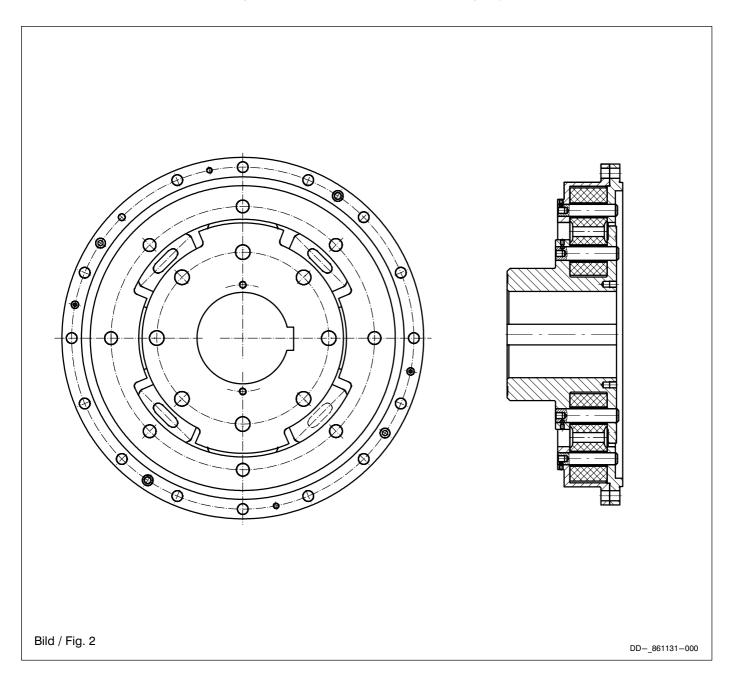
The individual rubber elements can be mounted radially and can be connected to the coupling parts by cyl. pins. The torque to be transmitted causes a tensile strain in the elements which is absorbed by the vulcanized nylon fabric inserts.

As rubber elements with fabric of extremetensile strength are used, the Stromag GE—coupling is suitable to absorb high torque shock loads. The breaking torque is much higher than the nominal torque. High alternating torques are admissible as the damping heat can be dissipated through the free space between the individual elements. A good structure—borne noise insulation is also achieved.

Smooth running by coupling operation and less rotating radial forces are obtained by selection and arrangement of the single elements according to their tensile characteristic curve. The GE—coupling can be used in the temperature range from  $-50^{\circ}$ C up to  $+80^{\circ}$ C. The flexible elements can reach higher temperatures than the ambient temperature as a result of damping. For high ambient temperature, detect and adhere to the temperature factors from the diagram. When covering the coupling with a protective enclosure, bear this fact in mind or assure sufficient ventilation and heat dissipation.

The Stromag GE-coupling can be supplied with survey to EN 10204 as per the regulations of the classification societies.




#### Durchdrehsicherung

Die Stromag GE-Kupplung ist mit einer Durchdrehsicherung lieferbar. Bei Bruch der elastischen Elemente ist eine drehstarre und spielbehaftete Verbindung der An- und Abtriebsseite durch ineinandergreifende Klauen realisiert. Ein zeitlich eingeschränkter Notbetrieb mit begrenztem Drehmoment ist möglich. Die dabei zulässigen Drehmomente und Drehzahlen sind durch eine Drehschwingungsberechnung mit drehstarrer Übertragung gesondert zu berechnen.

Durchdrehsicherungen werden von einigen Klassifikationsgesellschaften für Schiffshauptantriebe vorgeschrieben.

#### **Emergency operation device**

The Stromag GE—coupling can be supplied with an emergency operation device (i.e. safety device against spinning). With rupture of the flexible elements, a torsionally stiff connexion with free play between the input and output sides is achieved by meshing claws. A time—limited emergency operation with limited torque is possible. The admissible torque and speed ratings have to be calculated separately by a torsional vibration caculation with torsionally stiff transmission. For marine main drives, some classification societies require the use of emergency operation devices.





Klassifikationsvorschriften für GE-Kupplungen in Schiffshauptantrieben Classification regulations for GE-couplings in marine main drives

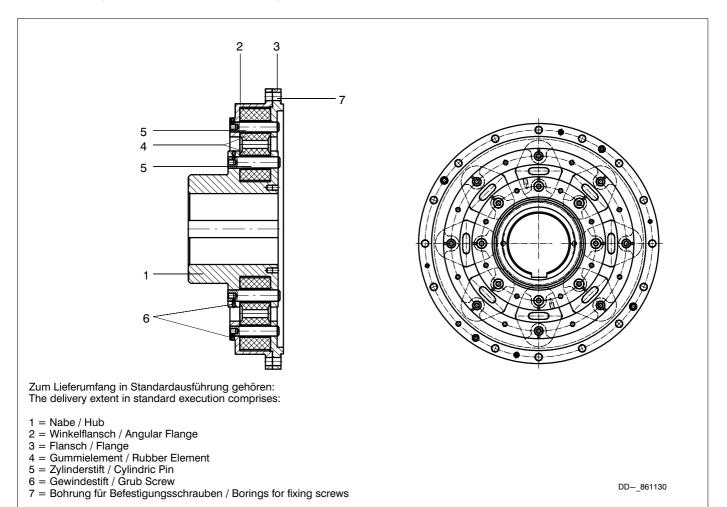
| Klassifikationsgesellschaft<br>Classification Society | Eisklasse<br>Ice classification                                                  | $T_N$ –Zuschläge $T_N$ –additional torque factor                                                                    | Durchdrehsicherung bei<br>Einmotoren-Anlagen<br>Emergency operation device<br>for single-engine<br>installations |
|-------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| ABS                                                   | keine /none<br>C<br>IC<br>IB<br>IA<br>B<br>A<br>IAA                              | nein / no 13 % 26 % 33 % 40 %                                     | ja / yes      |
| в٧                                                    | keine/none<br>III<br>II<br>I super                                               | nein / no auf Anfrage/ on request                                           | nein / no<br>nein / no<br>nein / no<br>nein / no<br>nein / no                                                    |
| DNV                                                   | keine / none 1 C 1 B 1 A 1 A Nothern Baltic Service Subarctic, Arctic, Antarctic | nein / no auf Anfrage/ on request ja/yes (auf Anfrage/on request) | ja / yes                                 |
| GL                                                    | keine / none<br>E<br>E 1<br>E 2<br>E 3<br>E 4                                    | nein / no auf Anfrage/ on request                                 | nein / no                                            |
| LRS                                                   | keine / none 3 2 1 1*                                                            | nein / no<br>nein / no<br>nein / no<br>nein / no<br>auf Anfrage/ on request                                         | ja / yes<br>ja / yes<br>ja / yes<br>ja / yes<br>ja / yes                                                         |
| RINa                                                  | keine / none<br>E IV<br>E III<br>E II                                            | nein / no                                                         | ja / yes<br>ja / yes<br>ja / yes<br>ja / yes<br>ja / yes                                                         |
| SSSR-Reg.                                             | keine / none $\Delta$ 2 $\Delta$ 1 $Y\Delta$                                     | nein / no<br>15 %<br>25 %<br>50 %<br>auf Anfrage/ on request                                                        | ja / yes<br>ja / yes<br>ja / yes<br>ja / yes<br>ja / yes                                                         |

Reserveelemente sind nicht vorgeschrieben.

Für Schiffshilfsantriebe werden keine besonderen Anforderungen gestellt.

Spare elements are not specified.

There are no special requirements regarding marine auxiliary drives.




#### Montagehinweise und Lieferumfang

Die Stromag GE-Kupplung kann mit ihrem Außenteil (2, 3) direkt an das Schwungrad eines Motors angeschraubt werden, von wo aus das zu übertragende Drehmoment über sternförmig angeordnete Gummielemente (4) und die Nabe (1) auf eine angeschlossene Maschine übertragen wird.

#### Mounting hints and delivery extent

The Stromag GE—coupling can be screwed directly to the flywheel of an engine by its outer part (2, 3); from that flywheel the torque is transmitted to a connected machine passing the radially arranged rubber elements (4) and the hub (1).



# Lagerung von gummielastischen Elementen

Bei einer geeigneten Lagerung behalten gummielastische Elemente ihre Eigenschaft über mehrere Jahre unverändert bei

Wesentlich ist, die gelagerten Teile vor Sauerstoff, Ozon, Licht, Wärme, Feuchtigkeit und Lösungsmitteln zu schützen. Lösungsmittel, Kraftstoffe, Schmierstoffe, Chemikalien, Säuren, Desinfektionsmittel und ähnliches dürfen im Lagerraum nicht aufbewahrt werden. Die Lagertemperatur sollte zwischen +10°C und +25°C liegen. Alle Lichtquellen mit ultraviolettem Licht sind schädlich und zu vermeiden. Ozoner—zeugende Einrichtungen, wie z.B. Lichtquellen und Elektromotoren, sind vom Lagerort fernzuhalten.

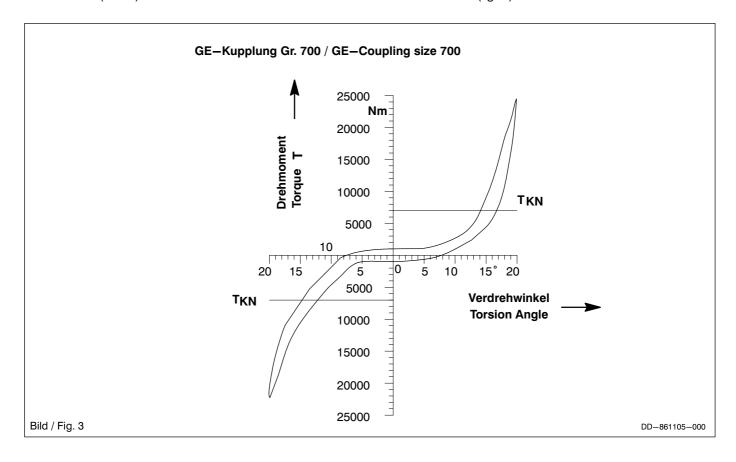
Die relative Luftfeuchtigkeit sollte 65% nicht überschreiten. Weitere Einzelheiten können dem Blatt DIN 7716 entnommen werden.

# Storing of rubber flexible elements

When suitably stored, rubber flexible elements maintain their characteristics for several years without change.

It is of great importance to protect the stored parts against oxygen, ozone, heat, light, moisture and solvents. Solvents, fuels, lubricants, chemicals, acids, disinfectants etc. must not stored in the same room with the elements. The temperature in the store should be between +10°C and +25°C. All light sources emitting ultra—violet rays are dangerous and should be avoided. Ozone producing equipment such as lights and electric motors should be kept away from the storage area.

The relative humidity should not exceed 65%. Further details are given on DIN sheet 7716.




#### Hinweise zur Auswahl der Kupplungsgröße

Die Stromag GE-Kupplung weist eine progressive Verdrehkennlinie auf (Bild 3).

#### Hints for selection of coupling size

The Stromag GE-coupling has a progressive torsional characteristic curve (fig. 3).



Es liegen die statischen und dynamischen Kennwerte vor. Mit ihrer Hilfe ist es möglich, die geeignete Kupplungsgröße für den vorliegenden Antriebsfall auszuwählen. Maßgebend dafür sind die Belastungen aus übertragener Leistung und Drehschwingungsbelastungen. Für stationäre Anlagenzustände sind  $T_{KN}$ ,  $T_{KW}$  und  $P_{KV}$ , für instationäre Anlagenzustände ist  $T_{Kmax}$  heranzuziehen.

Unterstützung bei der Auslegung, insbesondere der Drehschwingungsberechnung, ist durch die Fachabteilungen der Stromag AG möglich. Dazu bitten wir, den dem Katalog beiliegenden Fragebogen zu kopieren und uns ausgefüllt zuzusenden.

Elastische Kupplungen stellen in der Regel die sicherheitstechnische Sollbruchstelle eines Antriebsstranges dar. Überlastungen des Antriebsstranges führen deshalb in aller Regel zu einem Versagen der elastischen Kupplungselemente. Dieses Verhalten ist gewollt und schützt die Gesamtanlage vor unvorhergesehenen Beschädigungen. Folgeschäden, die aus dieser Sicherheitsfunktion der Kupplung resultieren, sind vom Anlagenkonstrukteur im voraus zu berücksichtigen und durch geeignete Maßnahmen zu überwachen bzw. zu verhindern.

The static and dynamic characteristics are known. On the basis of these characteristics it is possible to select the suitable coupling size for the actual application. The decesive factors are the transmitted power and the torsional vibration charges. For stationary system conditions use  $T_{KN},\,T_{KW}$  and  $P_{KV};$  for non–stationary system conditions use  $T_{Kmax}.$ 

The technical departments of Stromag AG are pleased to assist with the selection of the coupling, in particular by a torsional vibration calculation. To that effect, please copy the questionnaire given in this catalogue, complete and return it to us.

Normally the flexible couplings present the predetermined breaking point of a propulsion line. Therefore over—loads of the propulsion line result in a failure of the flexible coupling elements. This behaviour is intentional and protects the entire system against unexpected damage. Subsequent failures resulting from the safety function of the coupling have to be taken into consideration by the system designer and have to be monitored or prevented resp. by taking suitable measures.

# Die Kennwerte der GE-Kupplung Characteristics of the GE-coupling



# $T_{KN}$

Das Nenndrehmoment der Kupplung kann im gesamten zulässigen Drehzahlbereich dauernd übertragen werden. Es darf vom Nenndrehmoment  $T_N$  der Anlage nicht überschritten werden.

$$T_{KN} > T_{N}$$

#### T<sub>Kmax</sub>

Bei Stromag GE-Kupplungen ist das Maximaldrehmoment 3-fach so groß wie das Nenndrehmoment und maßgebend für die Dauerfestigkeit der Kupplungen.

$$T_{Kmax} = 3 \times T_{KN}$$

Das Maximaldrehmoment der Kupplung kann kurzzeitig, d.h. ohne thermische Einflüsse auf die Kupplung, als schwellende bzw. wechselnde Belastung ertragen werden und darf von regulären, instationären Spitzendrehmomenten  $T_{S,REG}^{\ 1)}$  der Anlage nicht überschritten werden.

$$T_{Kmax} \ge T_{S,REG}$$

Eine Überlastung der Stromag GE-Kupplung durch irreguläre, instationäre Spitzendrehmomente T<sub>S,IRREG</sub> <sup>2)</sup> der Anlage ist lebensdauerndverkürzend und wird in Einzelfällen bis zu einem Betrag vom 4,5-fachen Nenndrehmoment toleriert.

- 1) Reguläre, instationäre Spitzendrehmomente einer Anlage sind nicht vermeidbar und treten in bestimmten Betriebszuständen regelmäßig wiederkehrend auf (z.B.: Start- und Stopvorgänge, Resonanzdurchfahrt, Umschaltvorgänge, Beschleunigungsvorgänge etc.).
- 2) Irreguläre, instationäre Spitzendrehmomente einer Anlage sind vermeidbar und gehören nicht zum geplanten Betriebsbild (z.B: Not-Aus, Fehlsynchronisation, Kurzschluß etc.).

#### T<sub>KW</sub>

Das zulässige Dauerwechseldrehmoment gibt die Amplitude der dauernd zulässigen, periodischen Drehmomentschwankung an. Dieses Drehmoment darf einer Grundlast in der Größe von T<sub>KN</sub> überlagert werden.

Bei Drehschwingungsbeanspruchung muß zusätzlich die zul. Dämpfungsleistung  $P_{KV}$  überprüft werden.

#### $\Delta K_a$

Zulässige axiale Verlagerung der Kupplung. Die axiale Verlagerung  $\Delta$  Wa der Wellen muß  $\leq \Delta K_a$  sein.

$$\Delta K_a \ge \Delta W_a$$

#### $\Delta K_r$

Zulässige radiale Verlagerung der Kupplung. Die radiale Verlagerung  $\Delta$  W<sub>r</sub> der Wellen muß  $\leq \Delta$  K<sub>r</sub> sein.

$$\Delta K_r \ge \Delta W_r$$

#### $T_{KN}$

The nominal torque of the coupling can be transmitted continuously over the admissible speed—range. The nominal torque  $T_N$  of the installation must not exceed that one of the coupling.

$$T_{KN} \ge T_N$$

#### T<sub>Kmax</sub>

With Stromag GE—couplings the max. torque is three times the nominal torque and is the dominant factor for the coupling reliability.

$$T_{Kmax} = 3 \times T_{KN}$$

The max. torque rating is valid for short term pulsating or alternating torques, but must not be exceeded by the regular, non-stationary peak torques of the system  $T_{S,REG}$  <sup>1)</sup>. The rating does not take into consideration thermal influences.

$$T_{Kmax} \ge T_{S.REG}$$

Irregular non stationary peak torques  $T_{S,IRREG}$  <sup>2)</sup> reduce the service life of the Stromag GE—coupling, in some special cases peak torques of 4.5 times the nominal torque can be tolerated.

- 1) Regular, non-stationary peak torques of a system cannot be avoided; with certain service conditions they occur on a regular base (e.g.: starting and stopping, resonance bands, switchingover processes, acceleration, etc.).
- 2) Irregular, non-stationary peak torques of a system can be avoided and are not included in the intended service (e.g.: emergency cut off, faulty synchronization, short-circuit, etc.).

#### T<sub>KW</sub>

The permissible continuous alternating torque states the amplitude of the permissible continuous periodic torque variations. This torque may be superimposed upon the basic load equal to  $T_{\rm KN}$ .

With torsional vibration stress, the admissible damping output  $P_{\mbox{\scriptsize KV}}$  must also be checked.

#### $\Delta K_a$

Permissible axial offset of the coupling. The axial offset  $\Delta$  W<sub>a</sub> of the shafts must be  $\leq \Delta$ K<sub>a</sub>.

$$\Delta K_a \ge \Delta W_a$$

#### Δ Κ.

Permissible radial offset of the coupling. The radial offset  $\Delta$  W<sub>r</sub> of the shafts must be  $\leq \Delta$  K<sub>r</sub>.

$$\Delta K_r \ge \Delta W_r$$



Die bei der Stromag GE-Kupplung angegebenen Werte für  $\Delta$  K<sub>r</sub> beziehen sich auf Drehzahlen der Kupplungswelle bis zu 600 min<sup>-1</sup>.

Die Umrechnung auf eine andere Drehzahl erfolgt nach der Beziehung

$$\Delta K_r(n) = \sqrt{\frac{600 \text{ min}^{-1}}{n}} \cdot \Delta K_r$$

Die zulässige radiale Verlagerung muß bei Umgebungstemperaturen über 30°C um den Temperaturfaktor  $S_{\vartheta Kr}$  reduziert werden.

$$\Delta K_r(T_U) = \frac{\Delta K_r}{S_{\vartheta K_r}}$$

# $\Delta \ \textbf{K}_{\textbf{W}}$

Zulässige winkelige Verlagerung der Kupplung. Die winkelige Verlagerung der Wellen  $\Delta$  W<sub>W</sub> muß  $\leq \Delta$  K<sub>W</sub> sein.

$$\Delta K_W > \Delta W_W$$

Für GE-Kupplungen ist ein  $\Delta$  K<sub>W</sub> von 0,5° zulässig. Dieser Wert darf jedoch nur ausgenutzt werden, wenn keine weiteren Wellenverlagerungen vorliegen.

# $C_a$

Die Axialfedersteife gibt die axiale Rückstellkraft nach dem Axialversatz an. Die angegebenen Werte müssen bei Umgebungtemperaturen über 30° C um den Temperaturfaktor  $S_{\vartheta C}$  reduziert werden.

$$C_a(T_U) = \frac{C_a}{S_{\partial C}}$$

#### C,

Die Radialfedersteife gibt die radiale Rückstellkraft nach dem Radialversatz an. Die angegebenen Werte müssen bei Umgebungtemperaturen über 30° C um den Temperaturfaktor  $S_{\vartheta C}$  reduziert werden.

$$C_r(T_U) = \frac{C_r}{S_{\Omega C}}$$

# C<sub>Tdyn</sub>

Die dynamische Drehfedersteifeist ein Maß für das Drehschwingungsverhalten der Kupplung. Sie gibt, bezogen auf ein Kupplungsdrehmoment, die Steilheit der Kraft-Weg-Kurve (Hysteresis-Schleife) eines überlagerten Wechseldrehmomentes an.

$$C_{Tdyn} = \frac{T_{el}}{\omega_W}$$

The value of  $\Delta K_r$  stated for the Stromag GE-coupling refers to coupling shaft speeds up to 600 rpm.

The conversion to other speeds is made by the equation

$$\Delta K_{r}(n) = \sqrt{\frac{600 \text{ min}^{-1}}{n}} \cdot \Delta K_{r}$$

With ambient temperatures higher than 30  $^{\circ}\text{C},$  the admissible radial offset must be reduced by the temperature factor  $S_{\vartheta Kr}$ 

$$\Delta K_r(T_U) = -\frac{\Delta K_r}{S_{\vartheta Kr}}$$

#### $\Delta$ K<sub>W</sub>

Permissible angular offset of the coupling. The angular offset of the shafts  $\Delta$  W<sub>W</sub> must be  $\leq$   $\Delta$  K<sub>W</sub>.

$$\Delta K_W \ge \Delta W_W$$

For GE-couplings a  $\Delta$  K<sub>W</sub> K of 0.5° is admissible. How-ever, this value must only be used when no other shaft offsets exist

# $C_a$

The axial stiffness is the axial restoring force in relation to the axial offset. With ambient temperatures above 30°C, the stated values must be reduced by the temperature factor  $S_{\vartheta C}$ .

$$C_a(T_U) = \frac{C_a}{S_{AC}}$$

#### С

The radial stiffness is the radial restoring force in relation to the radial offset. With ambient temperatures above 30°C, the stated values must be reduced by the temperature factor  $S_{\vartheta C}$ .

$$C_r(T_U) = \frac{C_r}{S_{\vartheta C}}$$

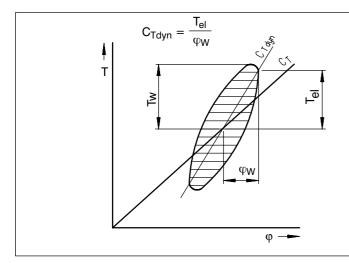
# C<sub>Tdyn</sub>

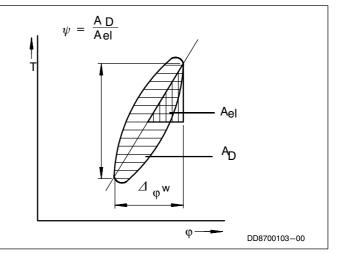
The dynamic torsional stiffness is a factor for the torsional vibration behaviour of the coupling. In relation to a coup—ling torque it indicates the steepness of the force/displacement curve (hysteresis loop) of a superimposed alternating torque.

$$C_{Tdyn} = \frac{T_{el}}{\varphi_W}$$



Bei GE-Kupplungen steigt der  $C_{Tdyn}$ -Wert progressiv über dem Kupplungsdrehmoment an. Er verändert sich jedoch mit der Größe der Amplitude, deren Frequenz und der Elementen-Temperatur.


Die Angaben für  $C_{Tdyn}$  beziehen sich auf ein Wechseldrehmoment von 0,2 x  $T_{KN}$ , eine Frequenz von 10 Hz und eine Umgebungstemperatur von 30°C. Die angegebenen Werte müssen bei Umgebungtemperaturen über 30°C um den Temperaturfaktor  $S_{\vartheta C}$  korrigiert werden.


$$C_{Tdyn}(T_U) = \frac{C_{Tdyn}}{S_{syc}}$$

For GE-couplings the value  $C_{Tdyn}$  rises progressively over the nominal torque. It changes, however, in relation to the amplitude, its frequency and to the temperature of the elements.

The data for  $C_{Tdyn}$  relates to an alternating torque of 0,2 x  $T_{KN}$ , a frequency of 10 Hz and an ambient temperature of 30°C. With ambient temperatures above 30°C, the stated values must be corrected by the temperature factor  $S_{\partial C}$ .

$$C_{Tdyn}(T_U) = \frac{C_{Tdyn}}{S_{\Omega C}}$$





 $\psi$ 

Die verhältnismäßige Dämpfung ist ein Maß für die Fähigkeit der Kupplung, einen Teil der anfallenden Schwingungsenergie in Wärme umzuwandeln.

Die Dämpfung kann mit der Dämpfungsschleife (Hystereseschleife) ermittelt werden.

$$\psi$$
 =  $\frac{W_D}{W_{el}}$  =  $\frac{A_D}{A_{el}}$ 

Die Fläche  $A_{\text{D}}$  ist ein Maß für die Dämpfungsarbeit  $W_{\text{D}}$ , während eines Schwingungszyklus.

Die Fläche  $A_{\rm el}$  stellt die elastische Formänderungsarbeit  $W_{\rm el}$  bei einer Belastung dar.

Die Angaben für  $\psi$  beziehen sich auf ein Wechseldrehmoment von 0,2 x  $T_{KN}$ , eine Frequenz von 10 Hz und eine Umgebungstemperatur von 60°C. Die angegebenen Werte müssen bei Umgebungtemperaturen über 60°C um den Temperaturfaktor  $S_{\vartheta\psi}$  korrigiert werden.

$$\psi(T_U) = \frac{\psi}{S_{\vartheta\psi}}$$

#### PKV

Die zulässige Dämpfungsleistung gibt an, wieviel Dämpfung (Wärme) die Kupplung dauerhaft aufnehmen bzw. abführen kann. Die Summe der Dämpfungsleistung aus jeder Schwingungsordnung (d.h.  $\Sigma P_{Vi}$ ) muß kleiner sein als die Dämpfungsleistung der Kupplung.

 $\psi$ 

The proportional damping is a factor for the capacity of a coupling to convert a part of the occuring cyclic energy into heat.

The damping can be determined by the damping loop (hysteresis loop).

$$\psi = \frac{W_D}{W_{Ol}} = \frac{A_D}{A_{el}}$$

The area  $A_D$  is a factor for the damping work  $W_D$  during a vibration cycle.

The area  $A_{\text{el}}$  represents the work done in deflection  $W_{\text{el}}\,$  at a given load.

The data for  $\psi$  relates to an alterning torque of 0,2 x  $T_{KN},$  a frequency of 10 Hz and an ambient temperatures of 60°C. With ambient temperatures above 60°C, the stated values must be corrected by the temperature factor  $S_{\vartheta C}.$ 

$$\psi(T_U) = \frac{\psi}{S_{\vartheta\psi}}$$

#### PKV

The admissible damping capacity indicates how much damping (heat) the coupling can permanently absorb resp. dissipate. The sum of the damping power of each vibration order (i.e.  $\Sigma P_{Vi}$ ) must be less than the damping power capacity of the coupling.



$$P_{KV} = \frac{\pi}{\sqrt{\left(\frac{2\pi}{\Psi}\right)^2 + 1}} \cdot \frac{T_W^2 \cdot f}{C_{Tdyn}}$$

Die zulässige Dämpfungsleistung muß bei Umgebungstemperaturen über 30°C um den Temperaturfaktor  $S_{\vartheta PKV}$  reduziert werden.

$$P_{KV}(T_U) = \frac{P_{KV}}{S_{\vartheta PKV}}$$

#### $S_{\theta Kr}$ , $S_{\theta PKV}$ , $S_{\theta C}$ und $S_{\theta \Psi}$

Temperaturfaktoren sollen das Absinken der physikalischen Eigenschaften von gummielastischen Werkstoffen durch Erwärmung berücksichtigen.

Die Kupplungstemperatur ist bestimmt durch die Umgebungstemperatur zuzüglich einer inneren Erwärmung, hervorgerufen durch innere Werkstoffreibung im Gummivolumen, in Folge von Wechseldrehmomenten und Wechselbelastungen durch Wellenversatz.

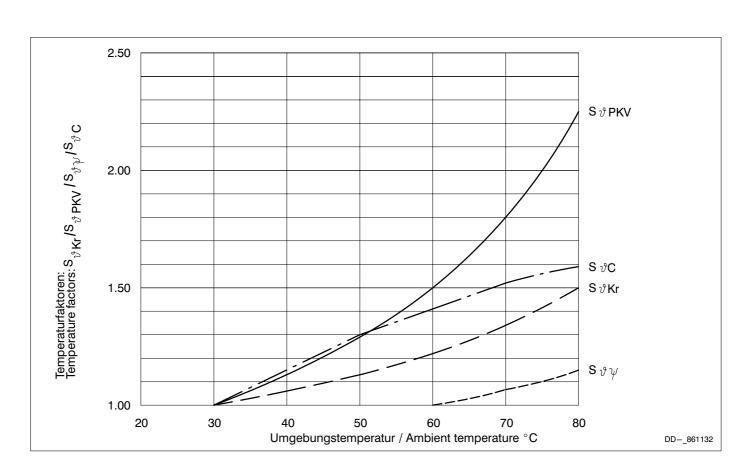
Bei höheren Umgebungstemperaturen müssen die Kupp-lungskennwerte  $\Delta$  K<sub>r</sub> und P<sub>KV</sub> über die jeweiligen Temperaturfaktoren S<sub> $\theta$ Kr</sub> und S<sub> $\theta$ PKV</sub> reduziert werden.

 $C_{Tdyn},~C_a,~C_r$  und  $\psi$  stellen sich aufgrund der Erwärmung auf einen um den Temperaturfaktor  $S_{\vartheta C}$  und  $S_{\vartheta \psi}$  veringerten Wert ein.

$$P_{KV} = \frac{\pi}{\sqrt{\left(\frac{2\pi}{W}\right)^2 + 1}} \cdot \frac{T_W^2 \cdot f}{C_{Tdyn}}$$

With an ambient temperature higher than 30°C, the admissible damping capacity must be reduced by the temperature factor  $S_{\vartheta PKV}$ 

$$P_{KV}(T_U) = \frac{P_{KV}}{S_{\theta PKV}}$$


#### $S_{\theta Kr}$ , $S_{\theta PKV}$ , $S_{\theta C}$ and $S_{\theta \psi}$

Temperature factors take into consideration the reduction of the physical characteristics of rubber-flexible material caused by heating.

The coupling temperature is determined by the ambient temperature plus an internal heating caused by internal material friction in the rubber volume, resulting from alternating torques and alternating loads due to shaft offsets.

With higher ambient temperatures the coupling characteristic values  $\Delta$  K<sub>r</sub> and P<sub>KV</sub> must be reduced through the corresponding temperature factors  $S_{\theta Kr}$  und  $S_{\theta PKV}$ 

Due to the heating,  $C_{Tdyn}$ ,  $C_a$ ,  $C_r$  and  $\psi$  adjust to a value reduced by the temperature factor  $S_{\vartheta C}$  and  $S_{\vartheta \psi}$ .





| Kupplungs-<br>größe | T <sub>KN</sub><br>Nm | T <sub>Kmax</sub><br>Nm | T <sub>KW</sub> (be |      | % Vorla<br>) kNm | st / pre- | ∆K <sub>a</sub><br>mm | ∆K <sub>r</sub><br>mm | ∆K <sub>rmax</sub><br>mm | C <sub>a</sub><br>kN/mm | C <sub>r</sub><br>kN/mm |
|---------------------|-----------------------|-------------------------|---------------------|------|------------------|-----------|-----------------------|-----------------------|--------------------------|-------------------------|-------------------------|
| Coupling size       |                       |                         | 25%                 | 50%  | 75%              | 100%      |                       | 4) 5)                 |                          | 5)                      |                         |
| 200 R               | 2000                  | 6000                    | 0,48                | 0,87 | 1,27             | 1,66      | 3,0                   | 1,5                   | 3,0                      | 0,32                    | 0,71                    |
| 320 R               | 3200                  | 9600                    | 0,76                | 1,39 | 2,03             | 2,66      | 3,0                   | 1,5                   | 3,0                      | 0,42                    | 0,95                    |
| 500 R               | 5000                  | 15000                   | 1,19                | 1,90 | 2,60             | 3,31      | 5,0                   | 1,5                   | 3,0                      | 0,61                    | 2,47                    |
| 700 R               | 7000                  | 21000                   | 1,66                | 2,59 | 3,51             | 4,43      | 5,0                   | 1,5                   | 3,0                      | 0,61                    | 2,47                    |
| 1200 R              | 12000                 | 36000                   | 2,85                | 4,90 | 6,95             | 9,00      | 5,0                   | 2,5                   | 5,0                      | 0,90                    | 3,33                    |
| 1600 R              | 16000                 | 48000                   | 3,80                | 6,77 | 9,73             | 12,7      | 5,0                   | 2,5                   | 5,0                      | 1,08                    | 5,00                    |
| 2100 R              | 21000                 | 63000                   | 4,99                | 8,66 | 12,3             | 16,0      | 5,0                   | 2,5                   | 5,0                      | 1,08                    | 5,00                    |
| 2900 R              | 29000                 | 87000                   | 6,90                | 12,4 | 17,8             | 23,3      | 8,0                   | 2,5                   | 5,0                      | 1,56                    | 8,48                    |
| 3500 R              | 35000                 | 105000                  | 8,30                | 14,2 | 20,1             | 26,0      | 8,0                   | 2,5                   | 5,0                      | 1,56                    | 8,48                    |
| 5000 R              | 50000                 | 150000                  | 11,9                | 20,3 | 28,6             | 37,0      | 9,0                   | 3,0                   | 6,0                      | 2,93                    | 14,9                    |
| 7000 R              | 70000                 | 210000                  | 16,6                | 26,7 | 36,9             | 47,0      | 9,0                   | 3,0                   | 6,0                      | 2,93                    | 14,9                    |
| 9000 R              | 90000                 | 270000                  | 21,4                | 34,3 | 47,1             | 60,0      | 10,0                  | 4,0                   | 8,0                      | 3,58                    | 15,0                    |
| 11000 R             | 110000                | 330000                  | 26,0                | 41,8 | 57,7             | 73,5      | 10,0                  | 4,0                   | 8,0                      | 3,58                    | 15,0                    |
| 15000 R             | 150000                | 450000                  | 35,6                | 49,7 | 63,9             | 78,0      | 10,0                  | 4,0                   | 8,0                      | 4,18                    | 17,5                    |
| 18000 R             | 180000                | 540000                  | 42,8                | 59,7 | 76,7             | 93,6      | 10,0                  | 4,0                   | 8,0                      | 4,18                    | 17,5                    |
| 22500 R             | 225000                | 675000                  | 53,4                | 74,6 | 95,8             | 117,0     | 11,0                  | 7,5                   | 15,0                     | 5,00                    | 16,7                    |
| 27000 R             | 270000                | 810000                  | 56,0                | 90,0 | 112,0            | 135,0     | 11,0                  | 7,5                   | 15,0                     | 6,00                    | 20,0                    |

- 1) bezogen auf eine Frequenz / referred to a frequency of f = 10 Hz
- $^{2)}$  bezogen auf ein Wechseldrehmoment / referred to an alternating torque of  $T_W=0.2~x~T_{KN}$
- $^{3)}$  bezogen auf ein Drehmoment von / referred to a torque of T = 0,8 x T<sub>KN</sub>
- <sup>4)</sup> bei  $n_{max} = 600 \text{ min}^{-1}$ , für höhere Drehzahlen: at  $n_{max} = 600 \text{ r.p.m.}$ , for higher speed ratings:

$$\Delta K_r(n) = \sqrt{\frac{600 \text{ min}^{-1}}{n}} \quad ^{\bullet} \Delta K_r$$

- <sup>5)</sup> Dieser Wert muß bei Kupplungstemperaturen, höher als 30°C, über den Temperaturfaktor reduziert werden. For coupling temperatures exceeding 30°C, this value must be reduced by the temperature factor.
- 6) Der  $P_{KV}$  60—Wert beschreibt die über eine Dauer von einer Stunde aufnehmbare Dämpfungsleistung. Dauerhaft aufnehmbare Dämpfungsleistung  $P_{KV}^{\infty} = P_{KV 60} \cdot 0,65$ The value  $P_{KV}$  60 describes the damping capacity to be absorbed over 1 hour. Permanently absorbed damping capacity  $P_{KV}^{\infty} = P_{KV 60} \cdot 0,65$



| Kupplungs-<br>größe | C <sub>Tdyn</sub> ( | (bei / with? | % Vorlast / p | reload) kNm | /rad <sup>1) 2)</sup> | n <sub>zul</sub>       | <sub>ψ</sub> 2) 3) 5) | P <sub>KV</sub> <sup>5) 6)</sup> W |
|---------------------|---------------------|--------------|---------------|-------------|-----------------------|------------------------|-----------------------|------------------------------------|
| Coupling size       | 10%                 | 25%          | 50%           | 75%         | 100%                  | min <sup>-1</sup> /rpm | ψ = γ = γ = γ         | PKV 3, 3, 44                       |
| 200 R               | 8,5                 | 16,1         | 28,7          | 41,4        | 54,0                  | 4360                   | 1,0                   | 660                                |
| warm                | 5,6                 | 10,6         | 18,9          | 27,3        | 35,6                  | 4360                   | 1,0                   | 660                                |
| 320 R               | 13,1                | 27,6         | 51,8          | 76,0        | 100                   | 3900                   | 1,0                   | 940                                |
| warm                | 8,6                 | 18,2         | 34,2          | 50,2        | 66,0                  | 3900                   | 1,0                   | 940                                |
| 500 R               | 31,0                | 56,7         | 99,4          | 142         | 185                   | 2880                   | 1,0                   | 1080                               |
| warm                | 20,5                | 37,4         | 65,6          | 93,7        | 122                   | 2880                   | 1,0                   | 1080                               |
| 700 R               | 33,8                | 67,8         | 125           | 181         | 238                   | 2880                   | 1,0                   | 1200                               |
| warm                | 22,3                | 44,8         | 82,5          | 119         | 157                   | 2880                   | 1,0                   | 1200                               |
| 1200 R              | 60,0                | 116          | 209           | 303         | 396                   | 2500                   | 1,0                   | 1380                               |
| warm                | 39,6                | 76,6         | 138           | 200         | 261                   | 2500                   | 1,0                   | 1380                               |
| 1600 R              | 142                 | 235          | 391           | 546         | 702                   | 2150                   | 1,0                   | 1600                               |
| warm                | 93,7                | 155          | 258           | 360         | 463                   | 2150                   | 1,0                   | 1600                               |
| 2100 R              | 144                 | 262          | 458           | 654         | 850                   | 2150                   | 1,0                   | 1800                               |
| warm                | 95                  | 173          | 302           | 432         | 561                   | 2150                   | 1,0                   | 1800                               |
| 2900 R              | 275                 | 417          | 653           | 890         | 1126                  | 1840                   | 1,0                   | 2100                               |
| warm                | 182                 | 275          | 431           | 587         | 743                   | 1840                   | 1,0                   | 2100                               |
| 3500 R              | 282                 | 450          | 731           | 1011        | 1291                  | 1840                   | 1,0                   | 2300                               |
| warm                | 186                 | 297          | 483           | 667         | 852                   | 1840                   | 1,0                   | 2300                               |
| 5000 R              | 749                 | 943          | 1267          | 1590        | 1913                  | 1540                   | 1,0                   | 2900                               |
| warm                | 494                 | 622          | 836           | 1050        | 1263                  | 1540                   | 1,0                   | 2900                               |
| 7000 R              | 760                 | 1019         | 1451          | 1883        | 2315                  | 1540                   | 1,0                   | 3600                               |
| warm                | 502                 | 673          | 958           | 1243        | 1528                  | 1540                   | 1,0                   | 3600                               |
| 9000 R              | 1071                | 1591         | 2457          | 3323        | 4189                  | 1340                   | 1,0                   | 4200                               |
| warm                | 707                 | 1050         | 1622          | 2193        | 2765                  | 1340                   | 1,0                   | 4200                               |
| 11000 R             | 1100                | 1724         | 2764          | 3805        | 4845                  | 1340                   | 1,0                   | 4750                               |
| warm                | 726                 | 1138         | 1824          | 2512        | 3198                  | 1340                   | 1,0                   | 4750                               |
| 15000 R             | 1857                | 2889         | 4610          | 6330        | 8050                  | 1175                   | 1,0                   | 5600                               |
| warm                | 1226                | 1907         | 3043          | 4178        | 5314                  | 1175                   | 1,0                   | 5600                               |
| 18000 R             | 2398                | 3789         | 6107          | 8425        | 10744                 | 1095                   | 1,0                   | 6100                               |
| warm                | 1583                | 2501         | 4031          | 5561        | 7092                  | 1095                   | 1,0                   | 6100                               |
| 22500 R             | 2648                | 3793         | 5702          | 7611        | 9519                  | 1095                   | 1,0                   | 6600                               |
| warm                | 1748                | 2504         | 3764          | 5024        | 6283                  | 1095                   | 1,0                   | 6600                               |
| 27000 R             | 3178                | 4552         | 6843          | 9133        | 11424                 | 1095                   | 1,0                   | 6800                               |
| warm                | 2098                | 3005         | 4517          | 6028        | 7541                  | 1095                   | 1,0                   | 6800                               |

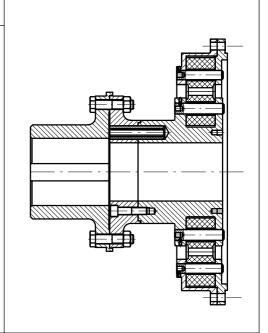
# **Stromag**

| GEFR                                                                      |                                                                  |  |
|---------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Zur Verbindung eines Schwung-<br>rades oder ähnlichem mit einer<br>Welle. | To connect a flywheel or similar to a shaft.                     |  |
| GETR                                                                      |                                                                  |  |
| Mit Tellerflansch zur Verbindung<br>einer Flanschwelle mit einer<br>Welle | With plate—shaped flange to connect a flanged shaft with a shaft |  |
| GEWR                                                                      |                                                                  |  |
| Zur Verbindung zweier Wellen miteinander.                                 | To connect two shafts.                                           |  |



| GEFRF                                                                                                                                               |                                                                                                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| Zur Verbindung eines Schwung-<br>rades oder ähnlichem mit einem<br>Flansch.                                                                         | To connect a flywheel or similar to a flange.                                                                  |  |
| GEGR                                                                                                                                                |                                                                                                                |  |
| Zur Verbindung eines Schwung-<br>rades oder ähnlichem mit einer<br>Gelenkwelle.                                                                     | To connect a flywheel or similar to a cardan shaft.                                                            |  |
| GEPR                                                                                                                                                |                                                                                                                |  |
| Zur Verbindung eines Schwung-<br>rades oder ähnlichem mit einer<br>Flanschwelle.<br>Die innere Pendellagerung erlaubt<br>eine kardanische Bewegung. | To connect a flywheel or similar to a flanged shaft. The internal pendulum bearing allows a cardanic movement. |  |




# **GEF...RFW**

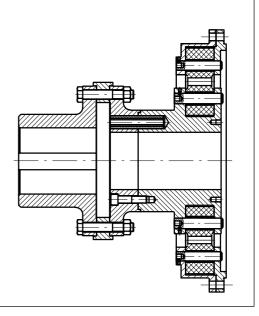
Zur Verbindung eines Schwungrades oder ähnlichem mit einer Welle.

Kupplung für radialen Ausbau.

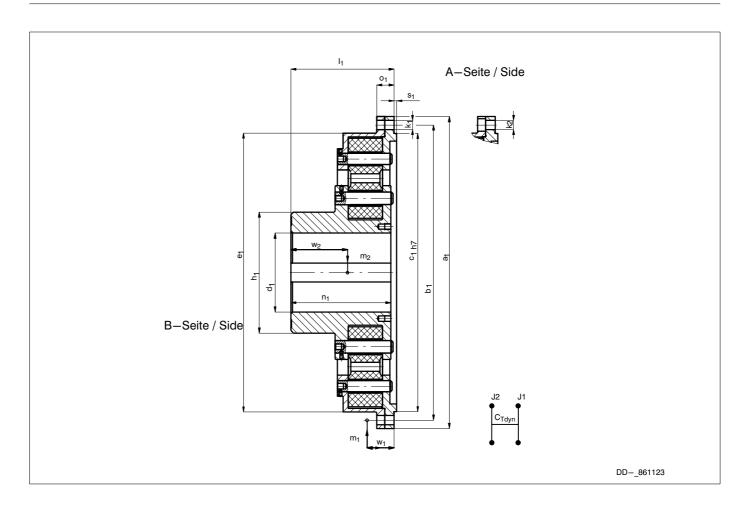
To connect a flywheel or similar to a shaft.

Coupling for radial dismantling.




# **GEF...RFSW**

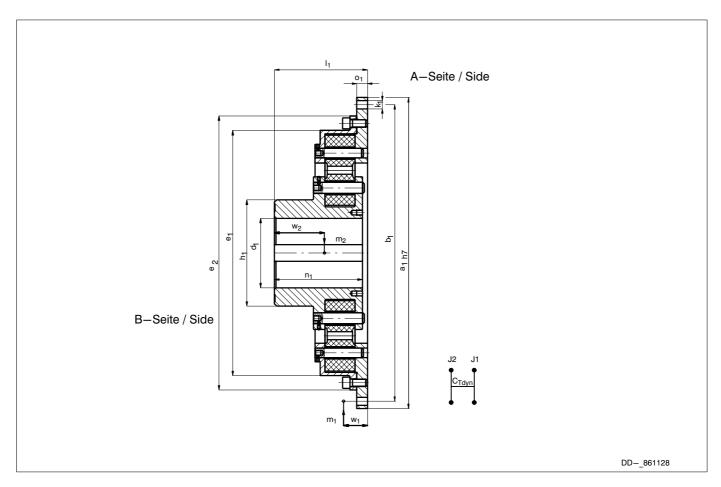
Zur Verbindung eines Schwungrades oder ähnlichem mit einer Welle.


Kupplung für radialen Ausbau mit Spacer.

To connect a flywheel or similar to a shaft.

Coupling for radial dismantling with spacer.



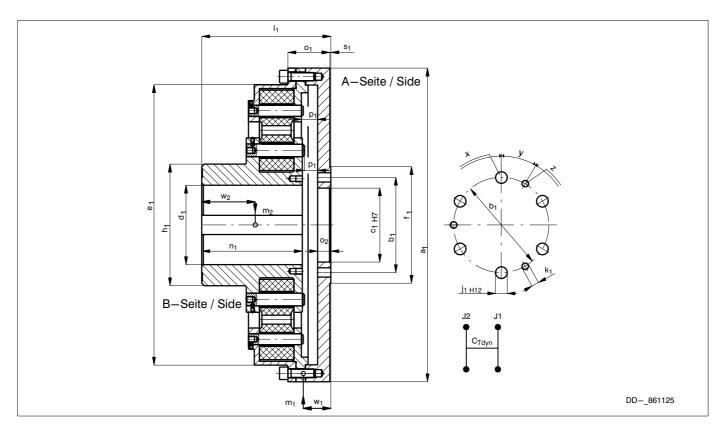





| Größe/                                           | Size                                                                                                                                                 | 200                                                           | 320                                                                 | 500                                                                | 700                                                                | 1200                                                                | 1600                                                                | 2100                                                                | 2900                                                                 | 3500                                                                 | 5000                                                                 | 7000                                                                 | 9000                                                             | 11000                                                            | 15000                                                              | 18000                                                              | 22500                                                              | 27000                                                              |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Durchmesser mm<br>Diameter                       | a <sub>1</sub><br>b <sub>1</sub><br>c <sub>1</sub><br>d <sub>1</sub> vor<br>d <sub>1</sub> max<br>e <sub>1</sub><br>h <sub>1</sub><br>k <sub>2</sub> | 340<br>320<br>278<br>35<br>70<br>300<br>110<br>12x11<br>2x6,6 | 380<br>354<br>328<br>45<br>90<br>329<br>140<br>12x13,<br>5<br>2x6,6 | 514<br>486<br>458<br>60<br>120<br>460<br>180<br>16x17,<br>5<br>2x9 | 514<br>486<br>458<br>60<br>120<br>460<br>180<br>16x17,<br>5<br>2x9 | 593<br>561<br>529<br>80<br>150<br>530<br>230<br>16x17,<br>5<br>2x11 | 690<br>650<br>610<br>90<br>180<br>612<br>270<br>16x22<br>2x13,<br>5 | 690<br>650<br>610<br>90<br>180<br>612<br>270<br>16x22<br>2x13,<br>5 | 808<br>767<br>726<br>120<br>220<br>726<br>330<br>16x26<br>2x13,<br>5 | 808<br>767<br>726<br>120<br>220<br>726<br>330<br>16x26<br>2x13,<br>5 | 958<br>908<br>858<br>140<br>280<br>860<br>385<br>16x33<br>2x17,<br>5 | 958<br>908<br>858<br>140<br>280<br>860<br>385<br>16x33<br>2x17,<br>5 | 1110<br>1051<br>992<br>160<br>320<br>995<br>480<br>16x36<br>2x22 | 1110<br>1051<br>992<br>160<br>320<br>995<br>480<br>16x36<br>2x22 | 1262<br>1195<br>1128<br>180<br>360<br>1135<br>540<br>16x36<br>2x22 | 1386<br>1315<br>1244<br>200<br>400<br>1236<br>600<br>24x38<br>2x22 | 1386<br>1315<br>1244<br>210<br>420<br>1235<br>590<br>24x38<br>2x22 | 1386<br>1315<br>1244<br>210<br>420<br>1235<br>590<br>24x38<br>2x22 |
| Längen mm<br>Lengths                             | l <sub>1</sub> n <sub>1</sub> o <sub>1</sub> s <sub>1</sub> w <sub>1</sub> w <sub>2</sub> *                                                          | 136<br>135<br>18<br>3<br>27<br>72                             | 136<br>135<br>18<br>3<br>25<br>71                                   | 156<br>155<br>24<br>4<br>33<br>82                                  | 156<br>155<br>24<br>4<br>33<br>82                                  | 196<br>190<br>33<br>5<br>43<br>101                                  | 242<br>235<br>43<br>5<br>48<br>128                                  | 242<br>235<br>43<br>5<br>48<br>128                                  | 264<br>260<br>40<br>6<br>56<br>139                                   | 264<br>260<br>40<br>6<br>56<br>139                                   | 330<br>325<br>45<br>8<br>70<br>184                                   | 330<br>325<br>45<br>8<br>70<br>184                                   | 370<br>367<br>47<br>8<br>82<br>201                               | 370<br>367<br>47<br>8<br>82<br>201                               | 413<br>410<br>47<br>8<br>80<br>241                                 | 448<br>440<br>54<br>8<br>78<br>262                                 | 670<br>665<br>80<br>10<br>132<br>387                               | 670<br>665<br>80<br>10<br>131<br>390                               |
| Massen kg<br>Masses                              | m <sub>1</sub><br>m <sub>2</sub> *<br>m <sub>ges</sub>                                                                                               | 12<br>9<br>21                                                 | 14<br>14<br>28                                                      | 31<br>37<br>68                                                     | 31<br>37<br>68                                                     | 46<br>47<br>93                                                      | 80<br>83<br>163                                                     | 80<br>83<br>163                                                     | 110<br>135<br>245                                                    | 110<br>135<br>245                                                    | 178<br>220<br>398                                                    | 178<br>220<br>398                                                    | 292<br>358<br>650                                                | 292<br>358<br>650                                                | 324<br>594<br>936                                                  | 412<br>798<br>1210                                                 | 755<br>998<br>1753                                                 | 779<br>1020<br>1799                                                |
| 2<br>Mass.trägh.mom. kgm<br>Mass mom. of inertia | J <sub>1</sub><br>J <sub>2</sub> *                                                                                                                   | 0,23<br>0,03                                                  | 0,34<br>0,07                                                        | 1,37<br>0,24                                                       | 1,37<br>0,24                                                       | 2,65<br>0,59                                                        | 6,81<br>1,45                                                        | 6,81<br>1,45                                                        | 11,77<br>2,94                                                        | 11,77<br>2,94                                                        | 28,15<br>8,81                                                        | 28,15<br>8,81                                                        | 63,00<br>19,4                                                    | 63,00<br>19,4                                                    | 98,32<br>44,22                                                     | 145,8<br>73,57                                                     | 255,1<br>91,33                                                     | 262,6<br>94,20                                                     |

<sup>\*)</sup> bei max. Bohrungsdurchmesser / at max. bore diameter Weitere Kupplungsgrößen auf Anfrage / Other coupling sizes on request Maß— bzw. Konstruktionsänderungen vorbehalten / Dimensions and construction subject to change



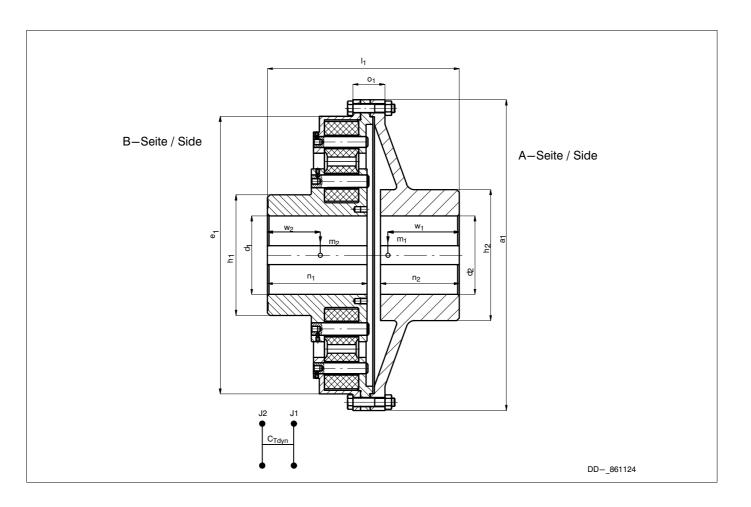



| Größe/S                                          | Size                                                                                                                                                 | 200                                                       | 200                                                       | 320                                                       | 320                                                       | 320                                                       | 320                                                        | 320                                                        | 500<br>700                                                   | 500<br>700                                                  | 500<br>700                                                  | 1200                                                        | 1200                                                      | 1600<br>2100                                                  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|
|                                                  | nschluß<br>nnection                                                                                                                                  | 14"                                                       | 16"                                                       | 14"                                                       | 16"                                                       | 18"                                                       | 18"                                                        | 21"                                                        | 16"                                                          | 18"                                                         | 21"                                                         | 21"                                                         | 24"                                                       | 21"                                                           |
| Durchmesser mm<br>Diameter                       | a <sub>1</sub><br>b <sub>1</sub><br>d <sub>1</sub> vor<br>d <sub>1</sub> max<br>e <sub>1</sub><br>e <sub>2</sub><br>h <sub>1</sub><br>k <sub>1</sub> | 466,7<br>438,2<br>35<br>70<br>300<br>340<br>110<br>8x13,5 | 517.5<br>488,9<br>35<br>70<br>300<br>340<br>110<br>8x13,5 | 466,7<br>438,2<br>45<br>90<br>329<br>380<br>140<br>8x13,5 | 517,5<br>488,9<br>45<br>90<br>329<br>380<br>140<br>8x13,5 | 571,5<br>542,9<br>45<br>90<br>329<br>380<br>140<br>6x17,5 | 571,5<br>542,9<br>45<br>90<br>329<br>380<br>140<br>12x17,5 | 673,1<br>641,4<br>45<br>90<br>329<br>380<br>140<br>12x17,5 | 517,5<br>488,9<br>60<br>120<br>460<br>517,5<br>180<br>8x13,5 | 571,5<br>542,9<br>60<br>120<br>460<br>514<br>180<br>12x17,5 | 673,1<br>641,4<br>60<br>120<br>460<br>514<br>180<br>12x17,5 | 673,1<br>641,4<br>80<br>150<br>530<br>593<br>230<br>12x17,5 | 733,4<br>692,2<br>80<br>150<br>530<br>593<br>230<br>12x20 | 673,1<br>641,4<br>90<br>180<br>612<br>673,1<br>270<br>12x17,5 |
| Längen mm<br>Lengths                             | I <sub>1</sub> n <sub>1</sub> o <sub>1</sub> w <sub>1</sub> w <sub>2</sub> *                                                                         | 139<br>135<br>13<br>19<br>72                              | 139<br>135<br>13<br>17<br>72                              | 139<br>135<br>13<br>20<br>71                              | 139<br>135<br>13<br>18<br>71                              | 139<br>135<br>13<br>17<br>71                              | 139<br>135<br>13<br>17<br>71                               | 139<br>135<br>28<br>14<br>71                               | 160<br>155<br>16<br>30<br>82                                 | 160<br>155<br>16<br>30<br>82                                | 160<br>155<br>16<br>23<br>82                                | 200<br>190<br>23<br>33<br>101                               | 200<br>190<br>23<br>30<br>101                             | 247<br>235<br>48<br>58<br>128                                 |
| Massen kg<br>Masses                              | m <sub>1</sub><br>m <sub>2</sub> *<br>m <sub>ges</sub>                                                                                               | 21<br>9<br>30                                             | 25<br>9<br>34                                             | 21<br>14<br>35                                            | 25<br>14<br>39                                            | 30<br>14<br>44                                            | 30<br>14<br>44                                             | 40<br>14<br>54                                             | 33<br>37<br>70                                               | 40<br>37<br>77                                              | 52<br>37<br>89                                              | 70<br>47<br>117                                             | 82<br>47<br>129                                           | 77<br>83<br>160                                               |
| 2<br>Mass.trägh.mom. kgm<br>Mass mom. of inertia | J <sub>1</sub><br>J <sub>2</sub> *                                                                                                                   | 0,59<br>0,03                                              | 0,83<br>0,03                                              | 0,63<br>0,07                                              | 0,71<br>0,07                                              | 1,21<br>0,07                                              | 1,21<br>0,07                                               | 2,19<br>0,07                                               | 1,50<br>0,24                                                 | 1,98<br>0,24                                                | 3,18<br>0,24                                                | 4,90<br>0,59                                                | 6,37<br>0,59                                              | 6,33<br>1,45                                                  |

bei max. Bohrungsdurchmesser / at max. bore diameter
 Weitere Kupplungsgrößen auf Anfrage / Other coupling sizes on request
 Maß— bzw. Konstruktionsänderungen vorbehalten / Dimensions and construction subject to change

Datum / Date 10.1999

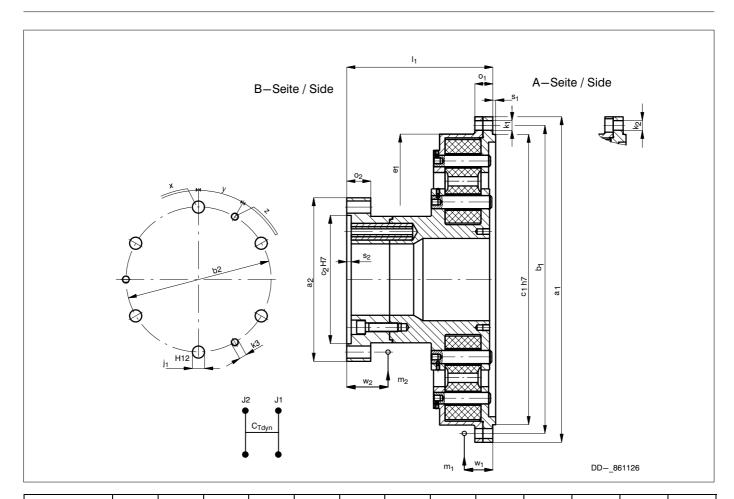





| Größe/S                                          | Size                                                                                                                                                                   | 200                                                             | 320                                                             | 500                                                              | 700                                                              | 1200                                                             | 1600                                                             | 2100                                                             | 2900                                                              | 3500                                                              | 5000                                                              | 7000                                                              | 9000                                                               | 11000                                                              |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Durchmesser mm<br>Diameter                       | a <sub>1</sub><br>b <sub>1</sub><br>c <sub>1</sub><br>d <sub>1</sub> vor<br>d <sub>1</sub> max<br>e <sub>1</sub><br>f <sub>1</sub><br>h <sub>1</sub><br>j <sub>1</sub> | 340<br>198<br>172<br>35<br>70<br>300<br>230<br>110<br>20<br>M12 | 380<br>198<br>172<br>45<br>90<br>329<br>230<br>140<br>20<br>M12 | 514<br>230<br>200<br>60<br>120<br>460<br>271<br>180<br>20<br>M14 | 514<br>230<br>200<br>60<br>120<br>460<br>271<br>180<br>20<br>M14 | 593<br>264<br>234<br>80<br>150<br>530<br>298<br>230<br>22<br>M14 | 690<br>322<br>287<br>90<br>180<br>612<br>358<br>270<br>22<br>M16 | 690<br>322<br>287<br>90<br>180<br>612<br>358<br>270<br>22<br>M16 | 808<br>378<br>334<br>120<br>220<br>726<br>420<br>330<br>26<br>M20 | 808<br>378<br>334<br>120<br>220<br>726<br>420<br>330<br>26<br>M20 | 958<br>480<br>420<br>140<br>280<br>860<br>540<br>385<br>33<br>M24 | 958<br>480<br>420<br>140<br>280<br>860<br>540<br>385<br>33<br>M24 | 1110<br>565<br>500<br>160<br>320<br>995<br>630<br>480<br>33<br>M27 | 1110<br>565<br>500<br>160<br>320<br>995<br>630<br>480<br>33<br>M27 |
| Längen mm<br>Lengths                             | l <sub>1</sub> n <sub>1</sub> 01 02 p <sub>1</sub> s <sub>1</sub> s <sub>2</sub> w <sub>1</sub> w <sub>2</sub> *                                                       | 173<br>135<br>53<br>18<br>20<br>2<br>2<br>39<br>72              | 173<br>135<br>53<br>18<br>20<br>2<br>2<br>37<br>71              | 205<br>155<br>70<br>23<br>27<br>3<br>2<br>47<br>82               | 205<br>155<br>70<br>23<br>27<br>3<br>2<br>47<br>82               | 243<br>190<br>77<br>29<br>24<br>4<br>3<br>52<br>101              | 294<br>235<br>91<br>32<br>27<br>4<br>5<br>61<br>128              | 294<br>235<br>91<br>32<br>27<br>4<br>5<br>61<br>128              | 337<br>260<br>108<br>32<br>45<br>5<br>5<br>75<br>139              | 337<br>260<br>108<br>32<br>45<br>5<br>5<br>75<br>139              | 411<br>325<br>121<br>35<br>51<br>5<br>5<br>89<br>184              | 411<br>325<br>121<br>35<br>51<br>5<br>5<br>89<br>184              | 472<br>367<br>144<br>50<br>55<br>5<br>5<br>102<br>201              | 472<br>367<br>144<br>50<br>55<br>5<br>5<br>102<br>201              |
| Winkel<br>Angles<br>o                            | x<br>y<br>z                                                                                                                                                            | 6x60<br>30<br>3x120                                             | 6x60<br>30<br>3x120                                             | 6x60<br>30<br>3x120                                              | 6x60<br>30<br>3x120                                              | 6x60<br>30<br>3x120                                              | 8x45<br>22,5<br>4x90                                             | 8x45<br>22,5<br>4x90                                             | 8x45<br>22,5<br>4x90                                              | 8x45<br>22,5<br>4x90                                              | 8x45<br>22,5<br>4x90                                              | 8x45<br>22,5<br>4x90                                              | 12x30<br>15<br>6x60                                                | 12x30<br>15<br>6x60                                                |
| Massen kg<br>Masses                              | m <sub>1</sub><br>m <sub>2</sub> *<br>m <sub>ges</sub>                                                                                                                 | 25<br>9<br>34                                                   | 30<br>14<br>44                                                  | 67<br>38<br>105                                                  | 67<br>38<br>105                                                  | 101<br>47<br>148                                                 | 161<br>83<br>244                                                 | 161<br>83<br>244                                                 | 233<br>135<br>368                                                 | 233<br>135<br>368                                                 | 369<br>220<br>589                                                 | 369<br>220<br>589                                                 | 634<br>358<br>992                                                  | 634<br>358<br>992                                                  |
| 2<br>Mass.trägh.mom. kgm<br>Mass mom. of inertia | J <sub>1</sub><br>J <sub>2</sub> *                                                                                                                                     | 0,50<br>0,03                                                    | 0,72<br>0,07                                                    | 2,94<br>0,24                                                     | 2,94<br>0,24                                                     | 5,63<br>0,59                                                     | 12,91<br>1,45                                                    | 12,91<br>1,45                                                    | 25,06<br>2,94                                                     | 25,06<br>2,94                                                     | 57,57<br>8,81                                                     | 57,57<br>8,81                                                     | 129,0<br>19,40                                                     | 129,0<br>19,40                                                     |

bei max. Bohrungsdurchmesser / at max. bore diameter
 Weitere Kupplungsgrößen auf Anfrage / Other coupling sizes on request
 Maß- bzw. Konstruktionsänderungen vorbehalten / Dimensions and construction subject to change

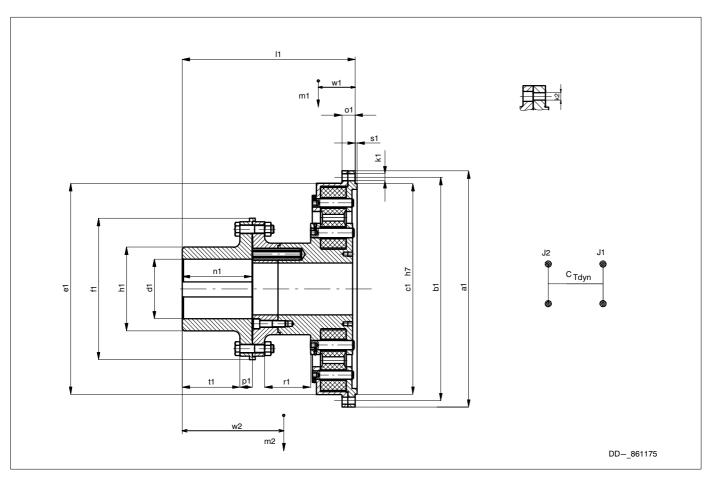
Datum / Date 10.1999






| Größe/S                                          | Size                                                                                                                                    | 200                                              | 320                                               | 500                                                | 700                                                | 1200                                               | 1600                                               | 2100                                               | 2900                                                 | 3500                                                 | 5000                                                 | 7000                                                 | 9000                                                  | 11000                                                 |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Durchmesser mm<br>Diameter                       | a <sub>1</sub> d <sub>1</sub> vor d <sub>1</sub> max d <sub>2</sub> vor d <sub>2</sub> max e <sub>1</sub> h <sub>1</sub> h <sub>2</sub> | 340<br>35<br>70<br>35<br>90<br>300<br>110<br>135 | 380<br>45<br>90<br>45<br>100<br>329<br>140<br>160 | 514<br>60<br>120<br>60<br>135<br>460<br>180<br>200 | 514<br>60<br>120<br>60<br>135<br>460<br>180<br>200 | 593<br>80<br>150<br>80<br>170<br>530<br>230<br>250 | 690<br>90<br>180<br>90<br>250<br>612<br>270<br>360 | 690<br>90<br>180<br>90<br>250<br>612<br>270<br>360 | 808<br>120<br>220<br>120<br>270<br>726<br>330<br>380 | 808<br>120<br>220<br>120<br>270<br>726<br>330<br>380 | 958<br>140<br>280<br>140<br>300<br>860<br>385<br>440 | 958<br>140<br>280<br>140<br>300<br>860<br>385<br>440 | 1110<br>160<br>320<br>160<br>350<br>995<br>480<br>500 | 1110<br>160<br>320<br>160<br>350<br>995<br>480<br>500 |
| Längen mm<br>Lengths                             | l <sub>1</sub><br>n <sub>1</sub><br>n <sub>2</sub><br>o <sub>1</sub><br>w <sub>1</sub> *<br>w <sub>2</sub> *                            | 250<br>135<br>100<br>35<br>106<br>72             | 265<br>135<br>115<br>35<br>113<br>71              | 300<br>155<br>120<br>46<br>132<br>82               | 300<br>155<br>120<br>46<br>132<br>82               | 365<br>190<br>150<br>61<br>146<br>101              | 460<br>235<br>200<br>71<br>186<br>128              | 460<br>235<br>200<br>71<br>186<br>128              | 520<br>260<br>220<br>76<br>219<br>139                | 520<br>260<br>220<br>76<br>219<br>139                | 651<br>325<br>280<br>84<br>279<br>184                | 651<br>325<br>280<br>84<br>279<br>184                | 728<br>367<br>320<br>87<br>314<br>201                 | 728<br>367<br>320<br>87<br>314<br>201                 |
| Massen kg<br>Masses                              | m <sub>1</sub> *<br>m <sub>2</sub> *<br>m <sub>ges</sub>                                                                                | 28<br>9<br>37                                    | 34<br>14<br>48                                    | 77<br>38<br>115                                    | 77<br>38<br>115                                    | 128<br>47<br>175                                   | 248<br>83<br>331                                   | 248<br>83<br>331                                   | 318<br>135<br>453                                    | 318<br>135<br>453                                    | 530<br>220<br>750                                    | 530<br>220<br>750                                    | 743<br>358<br>1101                                    | 743<br>358<br>1101                                    |
| 2<br>Mass.trägh.mom. kgm<br>Mass mom. of inertia | J <sub>1</sub> *<br>J <sub>2</sub> *                                                                                                    | 0,40<br>0,03                                     | 0,59<br>0,07                                      | 2,55<br>0,24                                       | 2,55<br>0,24                                       | 5,40<br>0,59                                       | 13,39<br>1,45                                      | 13,39<br>1,45                                      | 25,51<br>2,94                                        | 25,51<br>2,94                                        | 58,17<br>8,81                                        | 58,17<br>8,81                                        | 126,76<br>19,40                                       | 126,76<br>19,40                                       |

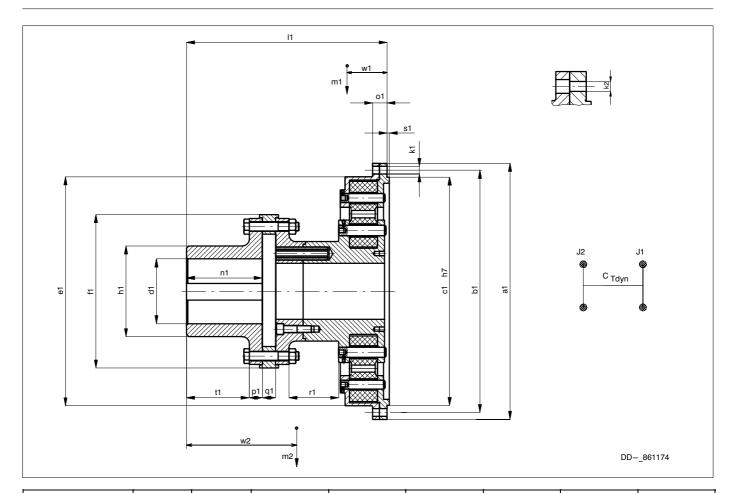
bei max. Bohrungsdurchmesser / at max. bore diameter
 Weitere Kupplungsgrößen auf Anfrage / Other coupling sizes on request
 Maß— bzw. Konstruktionsänderungen vorbehalten / Dimensions and construction subject to change






| Größe/Si                                    | ze                                                                                                                                                                                                 | 200                                                                          | 320                                                                            | 500                                                                          | 700                                                                          | 1200                                                                          | 1600                                                                          | 2100                                                                          | 2900                                                                          | 3500                                                                          | 5000                                                                          | 7000                                                                          | 9000                                                                          | 11000                                                                         |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Durchmesser mm<br>Diameter                  | a <sub>1</sub><br>b <sub>1</sub><br>c <sub>1</sub><br>a <sub>2</sub><br>b <sub>2</sub><br>c <sub>2</sub><br>e <sub>1</sub><br>j <sub>1</sub><br>k <sub>1</sub><br>k <sub>2</sub><br>k <sub>3</sub> | 340<br>320<br>278<br>230<br>198<br>172<br>300<br>20<br>12x11<br>2x6,6<br>M12 | 380<br>354<br>328<br>230<br>198<br>172<br>329<br>20<br>12x13,5<br>2x6,6<br>M12 | 514<br>486<br>458<br>271<br>230<br>200<br>460<br>20<br>16x17,5<br>2x9<br>M14 | 514<br>486<br>458<br>271<br>230<br>200<br>460<br>20<br>16x17,5<br>2x9<br>M14 | 593<br>561<br>529<br>298<br>264<br>234<br>530<br>22<br>16x17,5<br>2x11<br>M14 | 690<br>650<br>610<br>358<br>322<br>287<br>612<br>22<br>16x22<br>2x13,5<br>M16 | 690<br>650<br>610<br>358<br>322<br>287<br>612<br>22<br>16x22<br>2x13,5<br>M16 | 808<br>767<br>726<br>420<br>378<br>334<br>726<br>26<br>16x26<br>2x13,5<br>M20 | 808<br>767<br>726<br>420<br>378<br>334<br>726<br>26<br>16x26<br>2x13,5<br>M20 | 958<br>908<br>858<br>540<br>480<br>420<br>860<br>33<br>16x33<br>2x17,5<br>M24 | 958<br>908<br>858<br>540<br>480<br>420<br>860<br>33<br>16x33<br>2x17,5<br>M24 | 1110<br>1051<br>992<br>630<br>565<br>500<br>995<br>33<br>16x36<br>2x22<br>M27 | 1110<br>1051<br>992<br>630<br>565<br>500<br>995<br>33<br>16x36<br>2x22<br>M27 |
| Längen mm<br>Lengths                        | I <sub>1</sub> O <sub>1</sub> O <sub>2</sub> S <sub>1</sub> S <sub>2</sub> W <sub>1</sub> W <sub>2</sub>                                                                                           | 191<br>18<br>34<br>3<br>7<br>27<br>71                                        | 191<br>18<br>34<br>3<br>7<br>25<br>83                                          | 216<br>24<br>38<br>4<br>7<br>33<br>109                                       | 216<br>24<br>38<br>4<br>7<br>33<br>109                                       | 271<br>33<br>44<br>5<br>7<br>43<br>131                                        | 331<br>43<br>54<br>5<br>8<br>48<br>162                                        | 331<br>43<br>54<br>5<br>8<br>48<br>162                                        | 358<br>40<br>60<br>6<br>8<br>56<br>174                                        | 358<br>40<br>60<br>6<br>8<br>56<br>174                                        | 451<br>45<br>56<br>8<br>10<br>70<br>212                                       | 451<br>45<br>56<br>8<br>10<br>70<br>212                                       | 480<br>47<br>65<br>8<br>10<br>80<br>238                                       | 480<br>47<br>65<br>8<br>10<br>80<br>238                                       |
| Winkel<br>Angles<br>o                       | x<br>y<br>z                                                                                                                                                                                        | 6x60<br>30<br>3x120                                                          | 6x60<br>30<br>3x120                                                            | 6x60<br>30<br>3x120                                                          | 6x60<br>30<br>3x120                                                          | 6x60<br>30<br>3x120                                                           | 8x45<br>22,5<br>4x90                                                          | 8x45<br>22,5<br>4x90                                                          | 8x45<br>22,5<br>4x90                                                          | 8x45<br>22,5<br>4x90                                                          | 8x45<br>22,5<br>4x90                                                          | 8x45<br>22,5<br>4x90                                                          | 12x30<br>15<br>6x60                                                           | 12x30<br>15<br>6x60                                                           |
| Massen kg<br>Masses                         | m <sub>1</sub><br>m <sub>2</sub><br>m <sub>ges</sub>                                                                                                                                               | 12<br>19<br>31                                                               | 14<br>26<br>40                                                                 | 31<br>57<br>88                                                               | 31<br>57<br>88                                                               | 46<br>74<br>120                                                               | 80<br>141<br>221                                                              | 80<br>141<br>221                                                              | 110<br>200<br>310                                                             | 110<br>200<br>310                                                             | 178<br>364<br>542                                                             | 178<br>364<br>542                                                             | 292<br>502<br>794                                                             | 292<br>502<br>794                                                             |
| Mass.trägh.mom. kgm<br>Mass mom. of inertia | J <sub>1</sub><br>J <sub>2</sub>                                                                                                                                                                   | 0,23<br>0,10                                                                 | 0,34<br>0,15                                                                   | 1,37<br>0,41                                                                 | 1,37<br>0,41                                                                 | 2,65<br>0,89                                                                  | 6,81<br>2,30                                                                  | 6,81<br>2,30                                                                  | 11,77<br>4,55                                                                 | 11,77<br>4,55                                                                 | 28,15<br>12,32                                                                | 28,15<br>12,32                                                                | 63,07<br>27,81                                                                | 63,07<br>27,81                                                                |

Weitere Kupplungsgrößen auf Anfrage / Other coupling sizes on request Maß– bzw. Konstruktionsänderungen vorbehalten / Dimensions and construction subject to change






| Größe/Size                                       | •                                                                                                                                                                             | 320 RFW                                                                | 500 RFW                                                               | 700 RFW                                                               | 1200 RFW                                                               | 1600 RFW                                                               | 2100 RFW                                                               | 2900 RFW                                                                | 3500 RFW                                                                |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Durchmesser mm<br>Diameter                       | a <sub>1</sub><br>b <sub>1</sub><br>c <sub>1</sub><br>d <sub>1vorge./pre</sub><br>d <sub>1max</sub> .<br>e <sub>1</sub><br>f <sub>1</sub><br>h <sub>1</sub><br>k <sub>1</sub> | 380<br>354<br>328<br>45<br>90<br>329<br>220<br>140<br>12x13.5<br>2x6.6 | 514<br>486<br>458<br>60<br>120<br>460<br>294<br>170<br>16x17.5<br>2x9 | 514<br>486<br>458<br>60<br>120<br>460<br>294<br>170<br>16x17.5<br>2x9 | 593<br>561<br>529<br>80<br>150<br>530<br>355<br>210<br>16x17.5<br>2x11 | 690<br>650<br>610<br>90<br>180<br>612<br>400<br>255<br>16x22<br>2x13.5 | 690<br>650<br>610<br>90<br>180<br>612<br>400<br>255<br>16x22<br>2x13.5 | 808<br>767<br>726<br>120<br>220<br>726<br>490<br>330<br>16x26<br>2x13.5 | 808<br>767<br>726<br>120<br>220<br>726<br>490<br>330<br>16x26<br>2x13.5 |
| Längen mm<br>Lengths                             | l <sub>1</sub> n <sub>1</sub> 0 <sub>1</sub> p <sub>1</sub> r <sub>1</sub> s <sub>1</sub> t <sub>1</sub> w <sub>1</sub> w <sub>2</sub> *                                      | 307.2<br>130<br>18<br>19<br>81<br>3<br>112<br>25<br>167                | 361<br>155<br>24<br>27<br>92<br>4<br>129<br>33<br>201                 | 361<br>155<br>24<br>27<br>92<br>4<br>129<br>33<br>201                 | 433<br>175<br>33<br>31<br>114<br>5<br>145<br>43<br>213                 | 523<br>210<br>43<br>35<br>140<br>5<br>176<br>48<br>291                 | 523<br>210<br>43<br>35<br>140<br>5<br>176<br>48<br>291                 | 600<br>260<br>40<br>41<br>152<br>6<br>220<br>56<br>316                  | 600<br>260<br>40<br>41<br>152<br>6<br>220<br>56<br>316                  |
| Massen kg<br>Masses                              | m <sub>1</sub><br>m <sub>2</sub> *<br>m <sub>ges</sub> *                                                                                                                      | 14<br>34<br>48                                                         | 31<br>63<br>94                                                        | 31<br>63<br>94                                                        | 46<br>94<br>140                                                        | 80<br>188<br>268                                                       | 80<br>188<br>268                                                       | 110<br>316<br>426                                                       | 110<br>316<br>426                                                       |
| 2<br>Mass.trägh.mom. kgm<br>Mass mom. of inertia | J <sub>1</sub><br>J <sub>2</sub> *                                                                                                                                            | 0.34<br>0.17                                                           | 1.37<br>0.59                                                          | 1.37<br>0.59                                                          | 2.65<br>1.18                                                           | 6.81<br>3.41                                                           | 6.81<br>3.41                                                           | 11.77<br>7.92                                                           | 11.77<br>7.92                                                           |

bei max. Bohrungsdurchmesser / at max. bore diameter Weitere Kupplungsgrößen auf Anfrage / Other coupling sizes on request Maß– bzw. Konstruktionsänderungen vorbehalten / Dimensions and construction subject to change



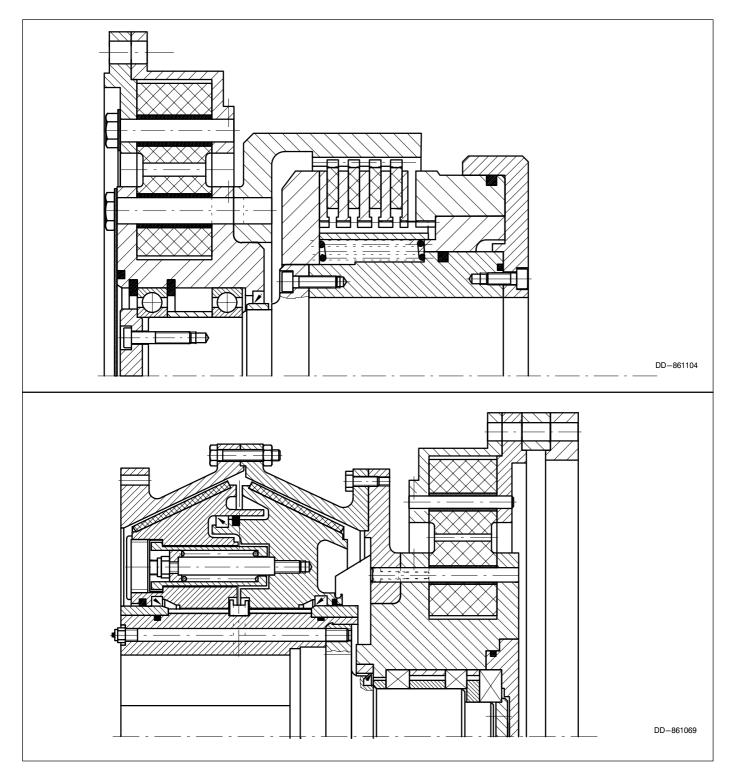


| Größe/Size                                       | 9                                                                                                                                                                             | 320 RFSW                                                               | 500 RFSW                                                              | 700 RFSW                                                              | 1200 RFSW                                                              | 1600 RFSW                                                              | 2100 RFSW                                                              | 2900 RFSW                                                               | 3500 RFSW                                                               |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Durchmesser mm<br>Diameter                       | a <sub>1</sub><br>b <sub>1</sub><br>c <sub>1</sub><br>d <sub>1vorge./pre</sub><br>d <sub>1max</sub> .<br>e <sub>1</sub><br>f <sub>1</sub><br>h <sub>1</sub><br>k <sub>1</sub> | 380<br>354<br>328<br>45<br>90<br>329<br>225<br>140<br>12x13.5<br>2x6.6 | 514<br>486<br>458<br>60<br>120<br>460<br>302<br>170<br>16x17.5<br>2x9 | 514<br>486<br>458<br>60<br>120<br>460<br>302<br>170<br>16x17.5<br>2x9 | 593<br>561<br>529<br>80<br>150<br>530<br>355<br>210<br>16x17.5<br>2x11 | 690<br>650<br>610<br>90<br>180<br>612<br>400<br>255<br>16x22<br>2x13.5 | 690<br>650<br>610<br>90<br>180<br>612<br>400<br>255<br>16x22<br>2x13.5 | 808<br>767<br>726<br>120<br>220<br>726<br>490<br>330<br>16x26<br>2x13.5 | 808<br>767<br>726<br>120<br>220<br>726<br>490<br>330<br>16x26<br>2x13.5 |
| Längen mm<br>Lengths                             | l <sub>1</sub> n <sub>1</sub> 0 <sub>1</sub> p <sub>1</sub> q <sub>1</sub> r <sub>1</sub> s <sub>1</sub> t <sub>1</sub> w <sub>1</sub> w <sub>2</sub> *                       | 337.2<br>130<br>18<br>19<br>30<br>81<br>3<br>112<br>25<br>181          | 391<br>155<br>24<br>27<br>30<br>92<br>4<br>129<br>33<br>214           | 391<br>155<br>24<br>27<br>30<br>92<br>4<br>129<br>33<br>214           | 463<br>175<br>33<br>31<br>30<br>114<br>5<br>145<br>43<br>255           | 553<br>210<br>43<br>35<br>30<br>140<br>5<br>176<br>48<br>304           | 553<br>210<br>43<br>35<br>30<br>140<br>5<br>176<br>48<br>304           | 630<br>260<br>40<br>41<br>30<br>152<br>6<br>220<br>56<br>331            | 630<br>260<br>40<br>41<br>30<br>152<br>6<br>220<br>56<br>331            |
| Massen kg<br>Masses                              | m <sub>1</sub><br>m <sub>2</sub> *<br>m <sub>ges</sub> *                                                                                                                      | 14<br>40<br>54                                                         | 31<br>72<br>103                                                       | 31<br>72<br>103                                                       | 46<br>130<br>176                                                       | 80<br>204<br>284                                                       | 80<br>204<br>284                                                       | 110<br>348<br>458                                                       | 110<br>348<br>458                                                       |
| 2<br>Mass.trägh.mom. kgm<br>Mass mom. of inertia | J <sub>1</sub><br>J <sub>2</sub> *                                                                                                                                            | 0.34<br>0.22                                                           | 1.37<br>0.74                                                          | 1.37<br>0.74                                                          | 2.65<br>1.81                                                           | 6.81<br>3.88                                                           | 6.81<br>3.88                                                           | 11.77<br>8.90                                                           | 11.77<br>8.90                                                           |

bei max. Bohrungsdurchmesser / at max. bore diameter Weitere Kupplungsgrößen auf Anfrage / Other coupling sizes on request Maß– bzw. Konstruktionsänderungen vorbehalten / Dimensions and construction subject to change



#### Stromag GE-Schaltkupplungen


Stromag GE-Schaltkupplungen sind auch als Schaltkupplungskombination, pneumatisch geschaltet, entweder mit einer Doppelkegel-Reibungskupplung oder mit einer Lamellenkupplung lieferbar.

Die unterschiedlichen Baureihen sind im Katalog "Stromag GE-Schaltkupplungen" zusammengefaßt.

#### Stromag GE-clutch/coupling units

The Stromag GE-couplings can also be supplied as pneumatically operated clutch/coupling units, either combined with a double-cone friction clutch or with a multi-disc clutch.

The various series are described in the catalogue "Stromag GE-Clutch/Coupling Units".





| Größe<br>Size                                                                                           | Formelzei-<br>chen<br>Symbol | SI-Einheit<br>SI-Unit                                         | Zeichen<br>Sign         | Umrechnungsfaktoren<br>Conversion Formula                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Länge / Length                                                                                          | 1                            | Meter                                                         | m                       | 1 m = 100 cm = 1000 mm<br>1 m = 39,4 in = 3,28 ft                                                                                                                                                                                                     |
| ebener Winkel / Flat Angle                                                                              | αβγ                          | Radiant / Radian                                              | rad                     | $1 \text{rad} = \frac{1 \text{m}}{1 \text{m}} \qquad 1 \text{rad} = \frac{180}{0 \pi}$                                                                                                                                                                |
| Masse / Mass                                                                                            | m                            | Kilogr. / Kilogramme                                          | kg                      | 1 kg = 1000 g<br>1 kg = 0,0685 lb s <sup>2</sup> /ft                                                                                                                                                                                                  |
| Kraft / Force                                                                                           | F                            | Newton                                                        | N                       | 1000 N = 1 kN<br>1 N = 1 kgm/s <sup>2</sup><br>1 N = 0,102 kp<br>1 N = 0,225 lb                                                                                                                                                                       |
| Drehmoment / Torque                                                                                     | Т                            | Newtonmeter                                                   | Nm                      | 1000 Nm = 1 kNm<br>1 Nm = 1 J = 1 Ws<br>1 Nm = 8,85 lb in = 0,738 lb ft                                                                                                                                                                               |
| Zeit / Time                                                                                             | t                            | Sekunde / second                                              | s                       | 1 min = 60 s<br>1 h = 60 min<br>1 d = 24 h                                                                                                                                                                                                            |
| Frequenz / Frequency                                                                                    | f                            | Hertz                                                         | Hz                      | 1 Hz = 1/s                                                                                                                                                                                                                                            |
| Winkelgeschwindigkeit<br>Angular Speed                                                                  | ω                            | Radiant/Sekunde<br>Radian/second                              | rad/s                   | $1 \frac{\text{rad}}{\text{s}} = \frac{2 \pi}{\text{s}}$                                                                                                                                                                                              |
| Drehzahl / Rotational Speed                                                                             | n                            | Minute / Minute                                               | min <sup>-1</sup> / rpm |                                                                                                                                                                                                                                                       |
| Federsteife / Spring Stiffness                                                                          | С                            | Newton/Meter                                                  | N/m                     | 1 N/m = 1000 N/mm = 1 kN/mm<br>1 N/m = 0,00571 lb/in                                                                                                                                                                                                  |
| Drehfedersteife / Torsional<br>Stiffness                                                                | Ст                           | Newtonmeter/Radiant<br>Newtonmeter/Radian                     | Nm/rad                  | 1000 Nm/rad = 1 kNm/rad<br>1 Nm/rad = 0,102 kpm/rad<br>1 Nm/rad = 8,85 lb in/rad<br>= 0,738 lbft/rad                                                                                                                                                  |
| Arbeit / Work                                                                                           | W                            | Joule                                                         | J                       | 1000 J = 1 kJ<br>1 J = 1 Nm = 1 Ws<br>1 J = 0,102 kpm<br>1 J = 0,000948 Btu                                                                                                                                                                           |
| Leistung / Power                                                                                        | Р                            | Watt                                                          | W                       | 1000 W = 1 kW<br>1 W = 1 Nm/s = 1 J/s = 1 VA<br>1 W = 0,102 kpm/s<br>1 W = 0,00136 PS<br>1 W = 0,00134 HP                                                                                                                                             |
| Massenträgheitsmoment<br>(Massenmoment 2. Grades)<br>Mass—Moment of Inertia<br>(Mass moment 2nd degree) | J                            | Kilogramm–Meter <sup>2</sup><br>Kilogramme Meter <sup>2</sup> | kg ·m²                  | 1 kgm <sup>2</sup> = 0,102 kpms <sup>2</sup><br>1 kgm <sup>2</sup> = 8,85 lb in s <sup>2</sup> = 0,738 lbft s <sup>2</sup><br>= 23,73 lbft <sup>2</sup><br>Bisheriges Schwungmoment:<br>J = 1 kgm <sup>2</sup> = GD <sup>2</sup> = 4 kpm <sup>2</sup> |
| Temperaturdifferenz<br>Temperature Difference                                                           | ϑ                            | Kelvin                                                        | К                       | 1 K = 1°C (Differenz)<br>273,15 K = 0°C<br>373,15 K = 100°C<br>1 K = 1,8°F (Difference)<br>273,15 K = 32°F<br>373,15 K = 212°F                                                                                                                        |



Fragebogen zur Auslegung von Elastischen Kupplungen Questionnaire to allow the determination of flexible couplings

| Antriebsmaschine<br>Driving machine                                                                                                               |                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Motorart (Elektro—, Verbrennungsmotor etc) Motor system (electric motor, combustion engine etc.)                                                  |                           |
| Motortyp (Fabrikat, Typ) / Motor or engine type (make, type)                                                                                      |                           |
| Motoraufstellung (starr, elastisch) / Engine mounting (rigid or resilient)                                                                        |                           |
| SAE-Motorgehäuse / SAE-housing of engine                                                                                                          |                           |
| Schwungradzentrierdurchmesser / Flywheel centering diameter                                                                                       | (mm)                      |
| Nennleistung / Nominal output                                                                                                                     | (kW)                      |
| Nenndrehzahl / Nominal speed                                                                                                                      | (min <sup>-1</sup> / rpm) |
| Drehzahlbereich / Speed range                                                                                                                     | (min <sup>-1</sup> / rpm) |
| Nenndrehmoment / Nominal torque                                                                                                                   | (Nm)                      |
| Maximaldrehmoment (Kippmoment) Max. torque (max. breakdown torque)                                                                                | (Nm)                      |
| Massenträgheitsmoment / Mass moment of inertia                                                                                                    | (kgm²)                    |
| Zahl der stündlichen Anläufe bzw. Reversierungen Number of starts resp. reversing processes per hour                                              |                           |
| Getriebe<br>Gearbox                                                                                                                               |                           |
| Untersetzung / Reduction                                                                                                                          |                           |
| Massenträgheitsmoment / Mass moment of inertia                                                                                                    | (kgm²)                    |
| Abtriebsmaschine<br>Driven machine                                                                                                                |                           |
| Art (Generator, Ventilator, Kompressor, Fest— oder Verstellpropeller) System (generator, fan, compressor, fixed— or controllable pitch propeller) |                           |
| Haupt- oder Nebenantrieb / Main or auxiliary drive                                                                                                |                           |
| Art der Bauweise (freistehend oder angeflanscht) Type of construction (self-supporting or flanged)                                                |                           |
| Massenträgheitsmoment / Mass moment of inertia                                                                                                    | (kgm²)                    |
| Kupplung<br>Coupling                                                                                                                              |                           |
| Einsatzstelle im Antriebsstrang (Prinzipskizze beifügen) Assembly site in the driving line (provide a principle sketch)                           |                           |
| Bohrungsabmessungen für Kupplungsnabe Bore dimensions for coupling hub                                                                            | (mm)                      |
| Umgebungstemperatur / Ambient temperature                                                                                                         | (°C; °K)                  |
| Klassifikationsgesellschaft<br>Classification society                                                                                             | ,                         |
| Schiffstyp<br>Type of vessel                                                                                                                      |                           |
| Eisklasse Ice class                                                                                                                               |                           |

# **Stromag Facilities**

#### Europe

#### Germany

Hansastraße 120 59425 Unna - Germany +49 (0) 23 03 102 0

Clutches & Brakes, Couplings, Geared Cam Limit Switches, Discs, Wind Brakes

Dessauer Str. 10 06844 Dessau-Roßlau - Germany +49 (0) 340 2190 0 Electromagnetic Clutches & Brakes

#### France

Avenue de l'Europe 18150 La Guerche sur L'Aubois - France +33 (0)2 48 80 72 72

Disc Brakes & Drum Brakes

#### **Great Britain**

Ampthill Road Bedford, MK42 9RD - UK +44 (0)1234 324347

Electromagnetic Clutches & Brakes, Industrial Caliper Brakes

#### **North America**

#### USA

31 Industrial Park Road New Hartford, CT 06057 - USA 860-238-4783

Electromagnetic Clutches & Brakes

300 Indiana Highway 212 Michigan City, IN 46360 – USA 219-874-5248 Couplinas

2800 Fisher Rd. Wichita Falls, TX 940-723-3400

Geared Cam Limit Switches, Industrial Caliper & Drum Brakes

#### Asia Pacific

#### China

T40B -5, No. 1765 Chuan Qiao Road Pudong 201206, Shanghai - China Tel +86 21-60580600

Clutches & Brakes, Electromagnetic Clutches & Brakes, Couplings, Industrial Caliper & Drum Brakes, Discs, Geared Cam Limit Switches, Wind Brakes

Gat No.: 448/14, Shinde Vasti, Nighoje Tal Khed, Pune- 410 501 +91 2135 622100

Clutches & Brakes, Electromagnetic Clutches & Brakes, Couplings, Industrial Caliper & Drum Brakes, Discs, Geared Cam Limit Switches, Wind Brakes

#### The Brands of Altra Industrial Motion

#### **Couplings**

#### Ameridrives

www.ameridrives.com

# Bibby Turboflex

www.bibbyturboflex.com

# **Guardian Couplings**

www.guardiancouplings.com

#### Нисо

www.huco.com

# **Lamiflex Couplings**

www.lamiflexcouplings.com

#### Stromag www.stromag.com

#### TB Wood's

www.tbwoods.com

# **Geared Cam Limit Switches**

#### Stromag

www.stromag.com

# **Electric Clutches & Brakes**

#### **Inertia Dynamics** www.idicb.com

# Matrix

www.matrix-international.com

# Stromag www.stromag.com

#### Warner Electric

www.warnerelectric.com

#### **Linear Products**

#### Warner Linear

www.warnerlinear.com

#### **Engineered Bearing Assemblies**

#### Kilian

www.kilianbearings.com

#### **Heavy Duty Clutches & Brakes**

#### **Industrial Clutch** www.indclutch.com

#### Twiflex

www.twiflex.com

Stromag www.stromag.com

# **Svendborg Brakes** www.svendborg-brakes.com

# Wichita Clutch

www.wichitaclutch.com

#### **Belted Drives**

TB Wood's www.tbwoods.com

#### Gearing

**Bauer Gear Motor** www.bauergears.com

#### **Boston Gear**

www.bostongear.com

# **Delroyd Worm Gear**

Nuttall Gear

# www.nuttallgear.com

# **Overrunning Clutches**

#### Formsprag Clutch

www.formsprag.com

#### **Marland Clutch** www.marland.com

Stieber www.stieberclutch.com

Neither the accuracy nor completeness of the information contained in this publication is guaranteed by the company and may be subject to change in its sole discretion. The operating and performance characteristics of these products may vary depending on the application, installation, operating conditions and environmental factors. The company's terms and conditions of sale can be viewed at http://www.altramotion.com/terms-and-conditions/sales-terms-and-conditions. These terms and conditions apply to any person who may buy, acquire or use a product referred to herein, including any person who buys from a licensed distributor of these branded products.

©2018 by Stromag LLC. All rights reserved. All trademarks in this publication are the sole and exclusive property of Stromag LLC or one of its affiliated companies.



www.stromag.com