

Manual

Turbine Flow Meters

HM Series

Version

Manual-Version

HM_M_EN_170101_E005

Index

1.	GENERAL INFORMATION	4
1.1.	General	4
1.2.	Evaluation	4
2.	INSTALLATION	5
2.1.	Start up	5
2.2.	Installing the Turbine Flow Meter	5
2.3. 2.3.1. 2.3.2. 2.3.3. 2.3.4.	Sources of Interference Turbulence and other Flow Disturbances Magnetic Fields and Similar Sources of Interference Gas Bubbles in the System Cavitation	6 6
3.	MAINTENANCE	7
3.1. 3.1.1. 3.1.2.	Fitting the Pickup Connecting Pickups, Amplifiers, Electronics. For Separated Versions IF* and VIEG.	7
3.2. 3.2.1. 3.2.2.	Spare Parts for Turbine Flow Meters	8
3.3.	Disassembly of the Repair Kit	9
3.4.	Assembly or Re-assembly of the Repair Kit	9
4.	INTENDED USE	10
5.	WARRANTY	10
5.1.	WEEE and RoHs	10

1. General Information

1.1. General

The measuring medium passes through the turbine flow meter in axial direction rotating the wheel. The RPM of the wheel is in proportion to the mean flow velocity. Our pickups in the flow meter detect the RPM of the wheel through the body of the turbine. The output signal of the pickups is an alternating voltage. The frequency of the voltage (pulses per litre) is proportional to the instantaneous flow rate.

The voltage is amplified and modified. Pulses per time unit will finally serve the evaluation of measurements (in addition, an analogue signal 4 to 20 mA is available when using the local display unit VTM). The K-factor (calibration factor) of the turbine flow meter defines the exact pulse rate per litre. We calibrate our flow meters to determine their K-Factors.

1.2. Evaluation

Among others, our calibration records include these specifications:

- · Max. measuring error referring to the instantaneous flow rate
- Max./min. frequency with corresponding flow values
- K-factors for different flow rates
- Average K-factor valid for the entire flow range

Please adjust your evaluation equipment considering the above specifications.

The following equation applies:

$$Q = \frac{f*60}{K}$$

Q = flow rate in ltr. per min

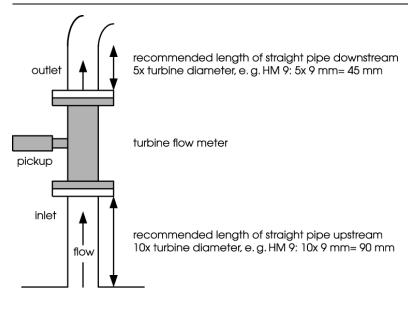
F = frequency in Hz

K = K-factor in pulses per litre

2. Installation

2.1. Start up

Mechanical and electrical installations start up and maintenance shall only be effected by qualified and authorized personnel. Make sure the measuring range of the meter cannot be exceeded by more than 20 %. Please purge your pipe system before installing the turbine. Fibrous contamination in particular must not enter the turbine.


Turbine's diameter	Filtration
3 - 9 mm	100 micron
9 - 50 mm	300 micron
50 - 250 mm	500 micron

2.2. Installing the Turbine Flow Meter

Choose a straight part of the pipe for installation in flow direction (arrow). The small turbines HM 9 EP and HM 9 RP must be installed in vertical position with outlet up. Furthermore, a backpressure of $\frac{1}{2}$ m is necessary here. All other turbines will work in every position. However, K-Factors might slightly change in horizontal position as we calibrate turbines below DN 50 in a vertical position. If necessary, you can request a horizontal calibration as a precaution.

NOTE:

Keep distance from sharp bends, T-pieces, valves, pumps by allowing a sufficient length of straight pipe up- and downstream of the meter.

Pipe connections

Pipe connections and turbine have to be of identical diameters. When deviations occur due to high-pressure connections the pipe connections should have an internal diameter slightly smaller than the turbine's nominal diameter.

Pipe reducers

Please use only cone types with an angle of 22° or 30°. Gaskets must not protrude into the nominal bore diameter.

2.3. Sources of Interference

2.3.1. Turbulence and other Flow Disturbances

Close to the meter will falsify measuring results. Under extreme conditions they might also damage the turbine. Laminar flow rectifiers (2.5 x turbine's nominal diameter long) fitted on both sides of the meter will eliminate problems.

2.3.2. Magnetic Fields and Similar Sources of Interference

Magnetic fields and similar sources of interference close to the meter might affect the pickups. Especially inductive pickups type IF* could react like an antenna.

Vibrating pipes can have a resonance effect on the pickups. You may prevent this by:

- Fitting the pickup properly (see chapter 3.1) to avoid metalic contact of the pickup tip and the bottom of the pickup bore in the turbine body.
- Fitting anti-vibration joints or flexible pipes before or after the flow rectifiers (see chapter 2.2).

2.3.3. Gas Bubbles in the System

Please ensure that pipes are filled with liquid. Bubbles, air pockets or gas will falsify your measuring results. Turbine flow meters detect the total volume passing through regardless of whether it is completely liquid or containing gas or air.

2.3.4. Cavitation

(especially with measuring liquidized gases)

Always ensure a minimum downstream contra pressure to prevent cavitation:

2x pressure drop of the turbine flow meter

- + vapor pressure of the measuring medium
- = minimum downstream static pressure

3. Maintenance

In principle, turbine wheel flowmeters in standard design are maintenance-free in accordance with the above instructions. Regular recalibration is recommended to prevent damage and wear to the flow meter. This should be carried out annually or after 8000 operating hours.

3.1. Fitting the Pickup

This is how you avoid a metalic contact of the pickup tip and the bottom of the pickup bore:

- Screw in pickup handtight without using force
- Slacken pickup by a 1/4 turn
- Tighten lock nut

3.1.1. Connecting Pickups, Amplifiers, Electronics

NOTE:

Please use only screened cables, preferably braidscreen types.

3.1.2. For Separated Versions IF* and VIEG

2.5 m maximum cable length between pickup and amplifier. Connections are as follows:

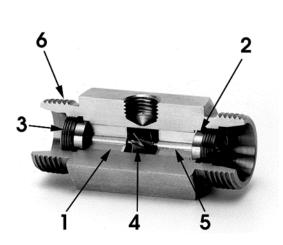
Pickup/amplifier	Pin or termi	nal connection	Application
VTE*/P	pin 1	U _B +7 to 29 V DC	resistant to interference -20 °C to +120 °C/+150 °C
Carrier-Frequency Amplifier	pin 2	push pull	
	pin 3	0 V/mass	[-4 °F to 248 °F/302 °F]
	pin 4	open collector	
	pin 5	open collector (emitter)	
VTM*	pin 1	U _B +7 to 29 V DC	local display unit with analogue output -20 °C to +120 °C/+150 °C [-4 °F to 248 °F/302 °F]
Local Display Unit	pin 2	frequency out 3-wire	
	pin 3	0 V	
	pin 4	-l _{out}	
	pin 5	+l _{out}	
	pin 6	shield	
IF*HT/K Inductive Coil and	pins A,C	signal	high medium temperature up to +240 °C/+350 °C [240 °F/662 °F]
VIEG Inductive Amplifier	terminal 1	U _B +7 to 29 V/DC	
	terminal 2	0 V/mass	
	terminal 3	NPN/PNP out active/passive, 2-wire	
	terminal 4	Shield	
	terminal 5	IF*HT coil A	
	terminal 6	IF*HT coil C	

For details refer to separate datasheets for pickups and amplifiers.

3.2. Spare Parts for Turbine Flow Meters

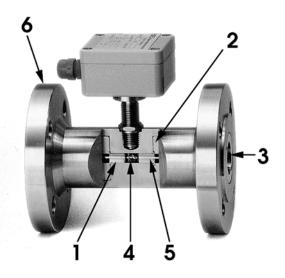
Pickups, amplifiers and repair kits are available as spare parts.

A repair kit includes:


3.2.1. Two Flow Rectifiers with Bearings

Located by projections to groove inside the housing. The projections are wedged between spacers (Ermeto turbines) or inlet cones (flange turbines) and a recess in the body. The spacers are fixed by ring nuts (3).

Ball bearings inside the rectifier bores absorb the axial forces.


3.2.2. One Turbine Wheel with Shaft

The wheel is placed between the rectifiers. The shaft goes inside the bearing holes of the rectifiers.

Turbine with Ermeto fittings

- 1 = flow rectifier with bearing
- 2 = spacers
- 3 = ring nut
- 4 = turbine wheel with shaft
- 5 = ball bearing inside
- 6 = Ermeto fitting

Turbine with flanges

- 1 = flow rectifier with bearing
- 2 = inlet cone
- 3 = ring nut
- 4 = turbine wheel with shaft
- 5 = ball bearing inside
- 6 = flange

3.3. Disassembly of the Repair Kit

If you intend to reinstall the old parts, please place them exactly in their original positions later on. Mark the rectifiers and the wheel with a suitable pen to prevent confusion about entry- and outlet- side for re-assembly.

1. Remove the ring nuts

- With flange-typed meters use a pin wrench
- With Ermeto-typed meters use a screwdriver
- With larger nominal sizes please make up a suitable steel sheet tool to unscrew the rings

2. Remove the distance rings (Ermeto turbines) or inlet cones (flange turbines)

3. Pull out the flow rectifiers

Subsequently from both sides by means of pointed pliers or pincers. Please be careful: The ball bearings must not drop out of the holes.

4. Please purge the turbine housing. Ensure that no sediments remain in the housing.

3.4. Assembly or Re-assembly of the Repair Kit

In case you received a complete a complete spare repair kit from KEM, please consider that a new calibration record is part of delivery. Adjust your instrumentation in accordance with the new record.

The rectifiers and the wheel must be mounted in the same position as delivered. Flow directions as indicated by an arrow must be the same on the repair kit and the turbine body.

- Place »E«-signed parts towards the entry
- Place »A«-signed parts towards the outlet

1. Insert the flow rectifiers

NOTE:

Please be careful: The ball bearings must not drop out of the holes.

2. Move the spacers into the turbine body and fix them with the ring nuts.

3. Torque for the ring nuts

Up to 9 mm dia.: 15 Nm • from 9 mm dia. on: 25 Nm • from 19 mm dia. on: 35 Nm

4. Test

On completed assembly check the meter to tightness and pressure resistance as per EC directive 97/23/EC.

The calibration data of the new repair kit are now applicable. Please adjust your evaluation electronics correspondingly.

4. Intended Use

During operation of the flow meter, it must be ensured that the values for the operating parameters specified in the documentation cannot be exceeded.

The specified maximum volume flow of each flow meter must not be exceeded by more than 20%. This must be observed in particular during rinsing and cleaning processes.

It must be ensured that the materials used in the flow meter are resistant to the media to be measured or pumped.

5. Warranty

KEM warrants material and production for a period of 18 months after installation and start up, max. 24 months from delivery date.

5.1. WEEE and RoHs

The unit described herein is not subject to the WEEE directive and the corresponding national laws.

At the end of life forward the unit to a specialized recycling company and do not dispose it of as domestic waste.

The unit described herein fully complies with the RoHS directive.

KEM Headquarters

Liebigstraße 5 85757 Karlsfeld Deutschland

T. +49 8131 59391-0 F. +49 8131 92604

info@kem-kueppers.com

KEM Sales

Liebigstraße 5 85757 Karlsfeld Deutschland

T. +49 8131 59391-100 F. +49 8131 92604

sales@kem-kueppers.com

KEM Manufacturing Center

Wettzeller Straße 22 93444 Bad Kötzting Deutschland

T. +49 9941 9423-0 F. +49 9941 9423-23

production@kem-kueppers.com

KEM Service & Repairs

Wettzeller Straße 22 93444 Bad Kötzting Deutschland

T. +49 9941 9423-37 F. +49 9941 9423-24

service@kem-kueppers.com

More distributors and partners can be found at: www.kem-kueppers.com