Series Rotary actuator (vane mechanism) variation
 Series Rotary actuator (vane mechanism) RV3* Series

Compact (RV3*1 to RV3*30)

	Model no.				Oscillating angle					ᄃ 0.0 3 3 3 3					$\stackrel{\text { ® }}{\text { ® }}$
$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{0}{2} \\ & \frac{0}{0} \\ & 0 \\ & \stackrel{\Pi}{6} \end{aligned}$		RV3S1	Single	0.12	\bigcirc		\bigcirc	\bigcirc			()	()	©		64
		RV3D1	Double	0.28	\bigcirc						-	()	O		
		RV3S3	Single	0.31	\bigcirc		\bigcirc	\bigcirc		\bigcirc	-	()	O		
		RV3D3	Double	0.71	\bigcirc					\bigcirc	-	()	O		
		RV3S10	Single	0.98	\bigcirc		\bigcirc	\bigcirc		\bigcirc	-	()	O		
		RV3D10	Double	2.11	\bigcirc					\bigcirc	()	(0)	O		
		RV3S20	Single	1.70	\bigcirc		\bigcirc	\bigcirc		\bigcirc	-	()	O		
		RV3D20	Double	3.88	\bigcirc					\bigcirc	()	(0)	O		
		RV3S30	Single	3.19	\bigcirc		\bigcirc	\bigcirc		\bigcirc		()	O		
		RV3D30	Double	7.70	\bigcirc					\bigcirc		()	O		
$\begin{aligned} & \frac{0}{2} \\ & \frac{1}{2} \\ & \frac{5}{3} \\ & 3 \end{aligned}$		RV3S* 10	Single	0.98	\bigcirc		\bigcirc	\bigcirc		\bigcirc		()	O		74
		RV3D*10	Double	2.11	\bigcirc					\bigcirc		(0)	O		
		RV3S ${ }_{\text {w }}$ 20	Single	1.70	\bigcirc		\bigcirc	\bigcirc		\bigcirc		(0)	©		
		RV3D*20	Double	3.88	\bigcirc					\bigcirc		(0)	O		
		RV3S ${ }^{\text {²0 }}$ 30	Single	3.19	\bigcirc		\bigcirc	\bigcirc		\bigcirc		©	\bigcirc		
		RV3D*30	Double	7.70	\bigcirc					\bigcirc		()	O		
$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & \frac{0}{2} \\ & \frac{0}{0} \\ & \frac{0}{5} \\ & \frac{0}{2} \\ & \frac{0}{0} \\ & \frac{c}{4} \end{aligned}$		RV3SA3	Single	0.31			${ }^{\text {spobituraide }}$			\bigcirc		O	\bigcirc		78
		RV3DA3	Double	0.71						\bigcirc		O	©		
		RV3SA10	Single	0.98						\bigcirc		(0)	©		
		RV3DA10	Double	2.11						\bigcirc		(0)	O		
		RV3SA20	Single	1.70						\bigcirc		()	\bigcirc		
		RV3DA20	Double	3.88						\bigcirc		(0)	\bigcirc		
		RV3SA30	Single	3.19						\bigcirc		(0)	O		
		RV3DA30	Double	7.70						\bigcirc		(0)	O		

© : Standard, ©: Option, \quad : Not available

Series variation

Safety precautions

Always read this section before starting use.
Refer to Ending 69 for cylinders and to Ending 78 for cylinder switches.

Rotary actuator with vane mechanism RV3* Series

Design \& Selection

1. COMMON

WARNING

 product. age. plings. high levels of vibration.■ Do not brake or hold by sealing pneumatics into the

If there is no stopping device outside the product and braking is applied by sealing air in with the directional control valve, the stop position may not be held due to air leakage, etc., leading operator, component, or device to injury or damage.

■ If the load fluctuation, vertical movement or frictional resistance varies, take the variation into consideration to ensure a safe design.
The rotary actuator's operation speed could increase, and could lead to physical or property damage.
\square Do not use the rotary actuator as a shock absorber. If abnormal pressure is applied or if air leaks, the deceleration effect will be lost, and could lead to physical or property dam-

■ Provide a tight connection at fixed sections and cou-

Always use a secure tightening method when the operation frequency is high or when using the high rotor at places with

■ Modifying the rotary actuator Never modify the rotary actuator.

A CAUTION

■ Do not apply torque exceeding rated output to the product.
If force exceeding rated output is applied, the product could be damaged.

- If a repeated accuracy is required for the oscillating angle, provide an external stopper to directly stop the load.

If the movement is stopped with the stopper provided on the rotary actuator, the oscillating angle could vary from the initial setting.

Use the rotary actuator within the specified oscillating time range.
Use in low-speed areas less than this range will prevent smooth movement because of stick-slip symptoms.

■ Provide a speed control valve to control the rotary actuator's oscillation speed.
Adjust the speed gradually from the low speed to the required speed.

- Precautions for rotary actuator switch

Pay attention to the proximity of rotary actuators.
When using two or more rotary actuators with switches in proximity or if a magnetic body moves very close to the rotary actuator, the magnetic interference could cause the switch to malfunction.
Design the system with a clearance of 40 mm or more between the rotary actuators.
(If an allowable clearance is indicated for each rotary actuator, observe the indicated value.)

Pay attention to the switch ON time at the oscillating angle's middle position
When the switch is set at the middle position of the oscillating angle and the load is driven when the magnet is passed, if the oscillating speed is too fast, the operation time will be short when the switch turns ON and the load may not finish the required movement.
The oscillation speed in this case is,

$$
\mathrm{V}=\frac{\text { Switch operation range }(\text { deg. })}{\text { Load operation time }(\mathrm{ms})} \times 1000(\text { deg. } / \mathrm{s})
$$

Installation \& Adjustment

1. COMMON

A WARNING

■ When adjusting the angle by supplying pressure, do not rotate the device more than necessary beforehand.
When adjusting while supplying pressure, the device could rotate and drop during adjustment, depending on how it is installed, possibly resulting in operator, component, or device injury or damage.

- Confirm that the devices operate correctly before starting. After installing the devices, connect the compressed air and power. Carry out appropriate functional inspections and leakage inspections to confirm that the devices are correctly installed and operating safety before starting the system.

- Painting

If the resin sections are painted, the resin could be adversely affected by the paint or solvent. Contact CKD to confirm whether painting is possible.
Never remove or cross out the writing on the nameplate attached to the rotary actuator.

- When adjusting the rotary actuator's oscillating angle with the pressure supplied, take measures to prevent the rotary actuator from rotating more than necessary. A hazardous state could result if the rotary actuator rotates more than necessary.
-When using an axial joint, select a free-moving axial joint. If a stationary axial joint is selected, the eccentricity could cause the joint to twist and lead to operation faults, product damage, or to physical or property damage.

Secure sufficient space for maintenance and inspection.
■ Do not apply load (thrust load) axially to the vane shaft or a malfunction may occur. If this is unavoidable, use a structure with a thrust bearing as shown in Fig. 1. If such a load is unavoidable, use a structure with thrust bearing as shown in Fig. 1.

Fig. 1
Avoid bending the end of the rotary actuator shaft or a malfunction may occur.
If such a load is unavoidable, use a structure conveying only rotation as shown in Fig. 2.
When connecting the vane shaft end and load at any position in the oscillating range, use a flexible coupling, etc., that does not twist off to prevent the vane shaft from breaking and bearings from wearing or seizing, etc.

Fig. 2 Radial load

Install the external stopper away from the rotary shaft. If the stopper is installed near the rotary shaft, a torque generated by the product could be applied on the rotary shaft. This reaction on the stopper may cause damaging the rotary shaft or bearings, and possibly resulting in injury or damage to operator, equipment, or device.

A CAUTION

\square When installing a load or jig, etc., on the rotary actuator vane shaft, check that load is not applied as shown in Fig. 3.

Fig. 3

Do not wipe the model indications, such as nameplate, with organic solvent, etc.
The indicated information could come off.
Do not put feet directly onto shaft or devices mounted onto shaft.
The shaft or bearings could be damaged if worker gets onto the shaft.

- If the load weight is large and oscillation is fast, shock generated due to inertia cannot be absorbed by the internal shock absorber, this may lead to damaging the rotary actuator.
Install a shock absorber to absorb inertia.

Installation \& Adjustment

2. Oscillating angle variable type $R V{ }_{D}^{S} A$

WARNING

■ When using the rotary actuator with variable oscillating angle, do not loosen the angle adjust screw further than the adjustment range.
If the angle adjust screw is loosened past the adjustment range it could come off, and could lead to physical or property damage.

A CAUTION

- Stopper

Always install the reference point stopper and angle setting stopper before operating the rotary actuator.When the stopper is set to the oscillating origin or maximum oscillating angle, if the stopper is set to the plus side from the adjustment range the vane could hit the internal stopper and cause damage to the internal stopper, etc. Always adjust the angle so that the jaw stops at the external stopper.
The reference point stopper is fixed and cannot be moved.

- Oscillating angle variable mechanism structure

An external stopper is installed to the tap hole provided on the rotary actuator's body. There is a reference point stopper and angle setting stopper. The reference stopper is fixed at a set point (oscillating origin), and the angle setting stopper is fixed at a position where the required setting angle can be attained. The rotating actuator stops at the set angle when the jaw attached to the shaft contacts the stopper. The position can be finely adjusted with the adjust screw provided on the stopper.

■ Setting the oscillating angle Without setting angle designation (standard)
The product is shipped with only the reference point stopper fixed. The angle setting stopper is enclosed. Before starting use, the angle setting stopper must be installed at a position calculated from the setting angle.
The installation pitch is 15°. Refer to the oscillating angle setting methods for details on installation.
With setting angle designation (custom order)
The reference point and angle setting stoppers are installed at the designated angle before the product is shipped.
Before starting use, each stopper must be finely adjusted to the accurate angle by turning the fine adjust screw.

Oscillating angle setting method When setting angle is at integer-fold of stopper installation pitch $\left(15^{\circ}\right)$
(1) Fix the stopper at the tap hole corresponding to the set angle. When installing the stopper, use the 30° pitch angle setting mark provided near the tap hole as a guide.

Setting angle

Series	Setting angle (integer time of mounting pitch 15°)
RV38A3	$\begin{aligned} & 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}, 105^{\circ}, \\ & 120^{\circ}, 135^{\circ}, 150^{\circ}, 165^{\circ}, 180^{\circ} \end{aligned}$
RV3SA10	
RV38A20	
RV38A30	$\begin{aligned} & 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}, 105^{\circ}, \\ & 120^{\circ}, 135^{\circ}, 150^{\circ}, 165^{\circ}, 180^{\circ}, \\ & 195^{\circ}, 210^{\circ}, 225^{\circ}, 240^{\circ}, 255^{\circ}, \\ & 270^{\circ} \end{aligned}$

[^0]
(2) Next, turn and finely adjust the fine adjust screw on the reference point stopper and angle setting stopper to set the correct angle. Always tighten the lock nut after setting.

Adjustable angle depth

Stopper fine adjustment depth for reference point	$\pm 3^{\circ}$ Note 1
Stopper fine adjustment depth for angle setting	-9° to $+6^{\circ}$
Stopper fine adjustment depth for setting angle when maximum angle	-9° to $+3^{\circ}$ Note 2

Note 1: RV3DA3 is -1° to $+3^{\circ}$.
Note 2: RV3DA3 is -9° to $+1^{\circ}$.
When setting angle is at the middle of a stopper installation pitch $\left(15^{\circ}\right)$ integer-fold
(1) If the setting angle is at the middle of the stopper's installation pitch $\left(15^{\circ}\right)$ integer-fold, install and fix the stopper at the tap hole shown with the arrow below.

In the front 6° range of the stopper installation pitch (15°), install so that the stopper is positioned on the side where the stopper reference comes to the front mounting screw. In the back 9° range, use the back mounting screw for the reference.
(2) Next, turn and finely adjust the fine adjust screw on the stopper and set the correct angle. Always tighten the lock nut after setting.

3. Shock absorber RVC

WARNING

- Precautions for handling shock absorbers
- Do not loosen or disassemble sections other than the adjustment needle. Otherwise this may lead to oil leakage.
- The hexagon nut at the base of the adjustment needle is not a lock nut, and must not be turned. Otherwise this may lead to oil leakage.
- Avoid using this product where it may be subject to powder dust, cutting chips, or liquids such as oil or water. Otherwise this may lead to shortened product life or faults.
- If oil leaks, refer to the Technical Manual (CT-N-217) for details on replacement.

A CAUTION

Installing the shock absorber Installation drawing

1. Use the installation holes on the main unit, install the shock absorber on the rotary actuator square shaft.
2. Install the shock absorber so it is above the rotary actuator port.
Confirm that the shock absorber is accurately installed.
3. Jaws for the shock absorber are provided. Confirm that the rotary actuator shaft is at the original point of oscillation. (Refer to the original point of oscillation)
4. When at the original point of oscillation, shock absorber claws will contact the shock absorber piston and will not fit. Turn the square shaft counterclockwise to where jaws fit.
5 . The shock absorber cannot be used as a stopper.

RRC

GRC
RV3*
NHS
HR
LN
FH100

During Use \& Maintenance

1. COMMON

A CAUTION

\square This rotary actuator is an oil-free actuator.
The actuator can be oiled, but once it has been oiled, it must be maintained in an oiled state. The lubricant which has been applied beforehand could run out with oiling, so operation faults could result if the oil is spent.
Use Class 1 turbine oil (non-additive) ISO VG32 when oiling. Never use other oils (spindle oil, machine oil, etc.), as they could damage the seal section.
Refer to recommended lubricants indicated in the table below.

Maker	Name
Idemitsu Kosan Co.,Ltd.	Diana Fresia S-32
Fuji-kosan	Fucoal Turbine 32
Nippon Oil Corporation	MITSUBISHI turbine oil 32
Showa Shell Sekiyu	Shell Vitrea 32
Mitsui Oil Co., Ltd.	Mitsui Turbine Oil 32
Japan Energy corporation	Turbine 32
Nippon Oil Corporation	Turbine oil 32
Cosmo Oil Company	Cosmo Turbine Oil 32
Exxon Mobil Corporation	Stanol 43N
KYGNUS	Turbine oil 32

2. Oscillating angle variable type RV3 ${ }_{D}^{S} A$

■ The stopping angle is set where the jaw contacts each stopper's fine adjust screw.
The stop angle accuracy does not include wear caused by operation. If the stop angle has changed because of wear, adjust the angle again with the fine adjust screw.

RRC GRC RV3* NHS HR		RV3s Series Torque: 1, 3, 10, 20, 30 Oscillating angle: $90^{\circ}, 180^{\circ}, 270^{\circ}$ JIS symbol														
LN FH100 HAP	Specifications Single vane mechanism															
BSA2	Descriptions	RV3S														
$\begin{aligned} & \text { BHA } \\ & \text { BHG } \end{aligned}$	Size	1			3			10			20			30		
LHA	Effective torque $\quad \mathrm{N} \cdot \mathrm{m}$	0.12			0.31			0.98			1.70			3.19		
LHAG	Actuation	Single vane														
HKP	Working fluid	Compressed air														
HLA/	Max. working pressure MPa	0.7									1.0					
$\frac{\mathrm{HLB}}{\mathrm{HLLG}}$	Min. working pressure $\quad \mathrm{MPa}$	0.2														
HLBG	Withstanding pressure MPa	1.05									1.5					
HEP	Ambient temperature ${ }^{\circ} \mathrm{C}$	-5 to $80^{\text {Note } 3}$												-5 to 60		
HCP	Port size	M5												Rc1/8		
HMF	Oscillating angle tolerance degree	90^{+4}	180+4	$270+4$	90^{+4}	180 ${ }^{+4}$	$270+4$	90+4	$180{ }^{+4}$	270+4	90 ${ }_{0}^{4}$	$180{ }^{+4}$	270^{+4}	90* ${ }^{3}$		270^{+3}
HMFB	Oscillating origin degree	45, 90		45	45, 90		45	45, 90		45	45, 90		45	45		
HFP	Allowable energy absorption Note 1 mJ	0.6			1.5			3			15			25		
HLC	Maximum cycle rate ${ }^{\text {Note } 2}$ cycle/min	300	180	96	240	150	60	240	150	90	210	120	84	180		60
HGP	Volumetric capacity cm^{3}	1.4	1.4	1.5		. 4	4		. 8	12	17		21		37	43
FH500	Allowable radial load N	30			40			50			300			400		
HBL	Allowable thrust load N	3			4						25			30		
HDL	Weight kg	0.036			0.07			0.14			0.25			0.47		0.46
HMD	Lubrication	Not required (when lubricating, use turbine oil Class 1 ISO VG32.)														
HJL	Double vane mechanism															
BHE	Descriptions	RV3D														
CKG	Size	1			3			10			20			30		
CK	Effective torque N.m	0.28			0.71			2.11			3.88			7.70		
CKA	Actuation	Double vane														
CKS	Working fluid	Compressed air														
CKF	Max. working pressure MPa	0.7									1.0					
CKJ	Min. working pressure $\quad \mathrm{MPa}$	0.2														
CKL2	Withstanding pressure $\quad \mathrm{MPa}$	1.05									1.5					
CKL2	Ambient temperature $\quad{ }^{\circ} \mathrm{C}$	-5 to $80{ }^{\text {Note } 3}$												-5 to 60		
${ }^{*}$ - HC	Port size													Rc1/8		
CKH2	Oscillating angle tolerance degree	$90{ }_{6}^{+4}$												$90{ }_{6}$		
CKLB2	Oscillating origin degree	45														
SCKFCK	Allowable energy absorption Note 1 mJ	0.6			1.5			3			15			25		
FJ	Maximum cycle rate ${ }^{\text {Note } 2}$ cycle/min	300			240						210			180		
FK	Volumetric capacity cm^{3}	1.1			2.8			8.1			15			34		
Ending	Allowable radial load N	30			40			50			300			400		
	Allowable thrust load N	3			4						25			30		
	Weight kg	0.037			0.072			0.14			0.26			0.48		
	Lubrication	Not required (when lubricating, use turbine oil ISO VG32.)														

[^1]Specifications / operational principle

Switch specifications

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
BHA/
BHG
LHA
LHA
LHAG
HKP
HLA/
HLB
HLB
HLAG/
HLBG
HEP

How to order

- Compact rotary actuator (standard type) RV3*

Note on model no. selection
Note 1: The type with switch is not available for the port position axial direction "S".
Note 2: The mounting bracket (FA and LS) is attached when shipping. Refer to Page 104 for dimensions.
<Example of model number>
RV3S3-90-45-SR-U-FA
Model: Compact rotary actuator
(A) Model no. : Single vane mechanism RV3S

B Nominal size
: 3
(C) Oscillating angle: 90°
(D) Oscillating origin: 45°

E Switch type : Radial lead wire with switch
Option : With flange bracket

How to order switch unit
<Example of model number>
RV3S-SR-3-90-45-U
Model: Switch unit
A Model:RV3S3
B Oscillating angle: 90°
(C) Oscillating origin: 45°
D Lead wire outlet direction

Symbol	Descriptions
A Model	
SR-3	Applicable actuator: RV3 ${ }^{\text {S }} 3$
SR-10	Applicable actuator: RV3s10
SR-20	Applicable actuator: RV3 ${ }_{\text {S }} 20$
SR-30	Applicable actuator: RV3530

B Oscillating angle
: Radial lead wire

Output characteristics, etc.,

Oscillating origin position

Oscillating origin 45°
RV3s1 to 30

Output characteristics graph (effective torque)
RV3s 1 to 10

Oscillating origin 90°
RV3S1 to 20

Note 1: Tolerance of oscillating origin is based on set screw position.
Note 2: Deflection of torsion angle between keyway on longer axis side (or cut plane) and square on shorter axis side to be within 1.5°.

- RV3s20, 30

Output table (effective torque)
($\mathrm{N} \cdot \mathrm{m}$)

Working pressure (MPa)		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Single vane	RV3S1	0.04	0.07	0.10	0.12	0.15	0.18	-	-	-
	RV3S3	0.1	0.17	0.24	0.31	0.38	0.45	-	-	-
	RV3S10	0.35	0.56	0.75	0.98	1.2	1.39	-	-	-
	RV3S20	0.59	0.95	1.33	1.7	2.1	2.49	2.87	3.26	3.68
	RV3S30	1.1	1.8	2.5	3.19	4.1	4.8	5.8	6.5	7.2
Double vane	RV3D1	0.10	0.16	0.22	0.28	0.34	0.40	-	-	-
	RV3D3	0.25	0.39	0.54	0.71	0.86	1.01	-	-	-
	RV3D10	0.76	1.17	1.62	2.11	2.54	3.03	-	-	-
	RV3D20	1.4	2.22	3.06	3.88	4.7	5.53	6.33	7.17	8.07
	RV3D30	2.7	4.4	6	7.7	9.5	11.2	12.99	14.8	16.6

Oscillating time setting

1. Use oscillating time within range of below table. If used with exceeding this range,
smooth operation can not be obtained due to stick and slip, etc.
Compact rotary actuator

Model no.	Oscillating angle		
	90°	180°	270°
RV3 ${ }^{\text {S }} 1$	0.03 to 0.6	0.06 to 1.2	0.09 to 1.8
RV3 ${ }^{\text {S }} 3$	0.04 to 0.8	0.08 to 1.6	0.12 to 2.4
RV3s10	0.045 to 0.9	0.09 to 1.8	0.135 to 2.7
RV3 ${ }^{\text {S20 }}$	0.05 to 1.0	0.10 to 2	0.15 to 3
RV3 ${ }^{\text {s }} 30$	0.07 to 0.7	0.14 to 1.4	0.21 to 2.1

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
BHA
BHG
LHA
LHAG
HKP
HLA/
HLB
HLAG
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
FKK
CK
CKA
CKS
CKF
CKJ
CKL2
CKL2 $-*-H C ~$
CKH2
CKLB2
NCKK
SKFK
FJ

Ending

RV3 ${ }^{\mathrm{s}}$ Series

RRC
GRC
RV3
HR
LN

HAP

BHA/ BHG

LHAG
CKF
CKJ

Internal structure and parts list

- RV3D30

No.	Parts name	Material	No.	Parts name	Material
1	Shoe sealant	Nitrile rubber	7	Body B	Aluminum alloy
2	Shoe	Resin	8	O ring	Nitrile rubber
3	Vane shaft	Iron steel + resin + nitrile rubber	9	O ring	Nitrile rubber
4	Bearing	Sintering oil limpregnated material	10	O ring	Nitrile rubber
5	Mounting bolt	11	Plate	Iron steel	
6	Body A	Iron steel	12	Stop pin	Iron steel

[^2]Compact/standard type

Dimensions

CAD

- RV3s ${ }^{\circ} 1$

Oscillating origin 45°

RV3 ${ }^{s}$ Series

Dimensions

RRC
GRC
RV3 *

NHS
HR
LN

FH100
HAP

BSA2
 BHG LHA LHAG

RV3 ${ }^{\mathrm{s} 3}$ CAD
Oscillating origin 45°

- S type
(Axial port position)

Radial lead wire

RV3 ${ }^{\mathrm{s}}$ Series
Compact/standard type
Dimensions
RV3ss10 CAD
■scillating origin 45°

Oscillating origin 90°

- RV3s ${ }^{s} 10$-*-SR (U)
- Axial lead wire

- Radial lead wire

RV3 ${ }^{\mathrm{s} \text { series }}$

Dimensions

RRC
GRC
RV3 *

- RV3 ${ }^{\text {s } 20-*-S R ~(U) ~}$
- Axial lead wire

\square Radial lead wire

RV3 ${ }^{\mathrm{s}}$ Series
Compact/standard type
Dimensions

- RV3\&30 CAD

- RV3 ${ }^{\text {s }} 30$-*-SR (U)
\square Axial lead wire

Radial lead wire

[^3]Valve specifications

Descriptions	Specifications (4KB	ries)	
Rated voltage V	100 VAC $(50 / 60 \mathrm{~Hz})$	200 VAC (50/60Hz)	24 VDC
Starting current A	0.056/0.044	0.034/0.026	0.075
Holding current A	0.028/0.022	0.017/0.013	
Power consumption W	1.8/1.4	2.1/1.6	1.8
Voltage fluctuation range	$\pm 10 \%$		
Insulation class	Class B molded coil		

Note 1: 100 VAC and 200 VAC are available with 110 VAC and 220 VAC(60 Hz).
Note 2: Refer to "Pneumatic Valve (BC-23SA)" for detail on valve.

Switch specifications

Descriptions	Proximity switch
	SR-* (-U)
Power voltage	5 to 30 VDC
Load voltage and current	5 to 30 VDC and 200mA or less
Current consumption	20 mA or less with 24 VDC
Internal voltage drop	1.5 V or less
Light	LED (ON lighting)
Leakage current	$10 \mu \mathrm{~A}$ or less
Lead wire length	1 m (oil resistant vinyl cabtire cable 4-conductor 0.2mm ${ }^{2}$)
Maximum shock resistance	$490 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	100M Ω and over with 500V mega
Withstand voltage	No failure when 1000 VAC is applied for one minute
Ambient temperature	5 to $60^{\circ} \mathrm{C}$
Protective structure	IEC standards IP67, JIS C0920 (water tight type)

[^4]

How to order

- Compact rotary actuator (with valve) RV3 ${ }^{* v}$

Symbol Descriptions	
B Valve	
V	Single solenoid
W	Double solenoid

C Nominal size

10	Effective torque 0.5 MPa	$0.98 \mathrm{~N} \cdot \mathrm{~m}$	$2.11 \mathrm{~N} \cdot \mathrm{~m}$
20		$1.70 \mathrm{~N} \cdot \mathrm{~m}$	$3.88 \mathrm{~N} \cdot \mathrm{~m}$
30		$3.19 \mathrm{~N} \cdot \mathrm{~m}$	$7.7 \mathrm{~N} \cdot \mathrm{~m}$

Note on model no. selection
Note 1: The mounting bracket (FA and LS) is attached when shipping. Refer to Page 104 for dimensions.
<Example of model number>
RV3SV10-90-45-1-SR-U-LS

(F) Valve voltage : 100 VAC
© Switch type : Radial lead wire with switch
(H) Option
: With foot bracket

- How to order switch unit

Symbol	Descriptions
A Model	
SR-10	Applicable actuator: RV3 ${ }^{\text {S }} 10$
SR-20	Applicable actuator: RV3 ${ }^{\text {S } 20 ~}$
SR-30	Applicable actuator: RV3 $^{\text {S }} 30$

B Oscillating angle

90	90°				
180	180°				
270	270°				
C Oscillating origin					
Model					
SR-3					
SR-10	SR-20	SR-30			
45	45°	\bigcirc	\bigcirc	\bigcirc	\bigcirc
90	90°	\bigcirc	\bigcirc	\bigcirc	

© Oscillating angle

90	90°	\bullet	\bullet
$\mathbf{1 8 0}$	180°	\bullet	
270	270°	\bullet	

E Oscillating origin							
Nominal size		10	20	30	10	20	30
45	45°	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
90	90° (excluding oscillating angle 270°)	\bigcirc	\bigcirc				

F Valve voltage

$\mathbf{1}$	100 VAC	\bigcirc	\bigcirc
$\mathbf{2}$	200 VAC	\bigcirc	\bigcirc
$\mathbf{3}$	24 VDC	\bigcirc	\bigcirc

G Switch type

Blank	Without switch		0
SR	Axial lead wire with switch		0
SR-U	Radial lead wire with switch		0

© Option

Blank	No option	\bigcirc	\bigcirc
FA	With flange bracket		\bigcirc
LS	With foot bracket		\bigcirc

Model: Switch unit
A Model : RV3S10
B Oscillating angle :90
(C) Oscillating origin : 45°
(D) Lead wire outlet direction
: Radial lead wire
<Example of model number>
RV3S-SR-10-90-45-U

D Lead wire outlet direction	
Blank	Axial lead wire with switch
U	Radial lead wire with switch

D Lead wire outlet direction

Operational principle / dimensions
Operational principle

Vane returns to oscillating origin, when solenoid valve turns off.

Dimensions CAD

Single solenoid Double solenoid
$\mathrm{ON} \rightarrow \mathrm{A}$ direction B solenoid $\mathrm{ON} \rightarrow \mathrm{A}$ direction $\mathrm{OFF} \rightarrow \mathrm{B}$ direction A solenoid $\mathrm{ON} \rightarrow \mathrm{B}$ direction

* The key is attached. Refer to Page 105 for the key dimensions.
* The detailed dimensions for each main section follow RV3D10, RV3D20 and RV3D30.

Symbol Model no.	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	U
RV3 ${ }_{\text {ow }}^{\text {sV }} 10$	42.5	73	10	40	23	6	14	5	2	58.3	26	60	35	M5	37	29.5	13.6	13.6	13.6
RV3 ${ }_{\text {ow }}^{\text {sV }} 20$	49.5	93.5	10	55	28.5	8	16	5.5	2	65.2	26	60	37	Rc1/8	40.4	32.9	16.2	23.2	23.2
RV3 ${ }_{\text {ow }}^{\text {sV }} 30$	64	105	13.5	60	31.5	10	20	5.5	2.5	80	26	60	44	Rc1/8	48	40.5	10.2	24.7	18.7

Note 1: The allowable energy absorption differs from the compact rotary actuator RV3* Series.
Note 2: Calculate allowable energy with allowable inertia energy of shaft of rotary actuator as following.
Allowable energy $\geqq 1 / 21 \omega^{2} \times 10^{3}$ (refer to Page 121 for detail.)
Note 3: The maximum working frequency is at supply pressure 0.5 MPa <in no load state>.
Note 4: 5 to $60^{\circ} \mathrm{C}$ when switch is provided.
Note 5: A key is enclosed with the rotary actuator with keyway.
Note 6: Consult CKD for products other than standard specifications.

Specifications / operational principle
External stopper specifications

Descriptions			RV3SA3	RV3SA10	RV3SA
Min. setting angle degree					
Max. setting angle		degree	180		
Angle setting pitch		egree			
Stopper fine adjustment range for angle setting degree					
Stopper fine adjustment range for reference point degree			± 3		
Stopper fine adismmentrange for angle setiting a max. setting angle degree			-9 to + 6		
Oscillating angle setting range and oscillating origin					
Model no.		Oscillating angle setting range		Oscillating origin	
Single vane	RV3SA3	30 to 180°		90°	
	RV3SA10				
	RV3SA20				
	RV3SA30		30 to 270°		45°
Double vane	RV3DA3	30 to 90°		45°	
	RV3DA10				
	RV3DA20				
	RV3DA30				

Switch specifications

Descriptions	Proximity switch
	FR-* (-U)
Applications	Programable controller, reray, IC circuit
Power voltage	5 to 30 VDC
Load voltage	5 to 30 VDC
Load current range	5 mA to 200 mA
Current consumption	20 mA or less with 24 VDC 10 mA or less with 12 VDC 4 mA or less with 5 VDC
Internal voltage drop	1.5 V or less
Light	LED (ON lighting)
Leakage current	$10 \mu \mathrm{~A}$ or less
Lead wire length	1.0 m (Oil-proof black 3-core cord)
Max. shock resistance	$490 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$100 \mathrm{M} \Omega$ and over with 500 V mega
Withstand voltage	No failure when 1500 VAC is applied for one minute
Ambient temperature	5 to $60^{\circ} \mathrm{C}$
Protective structure	IEC standards IP67, JIS C0920 (water tight type)

Operational principle

- Single vane

1. Configured with vane sliding inside of body, shaft, and shoe (stopper).
2. Air from port A pushes vane rotates shaft, and generates torque.
3. Air in opposite room is exhausted from port B, and shaft rotates clockwise.
4. Vane stops when it contacts to shoe.
5. Air supply from port B causes counterclockwise rotation in the same manner.

Double vane

1. Configured with two vanes sliding inside of body, integrated shaft, and shoe (stopper).
2. Air from port A pushes vane, and goes through passage in shaft, pushes another vane, turns shaft, and finally generates torque.
3. Rotating in the same manner of single vane.

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \mathrm{BHA} \\ & \mathrm{BHG} \end{aligned}$
LHA
LHAG
HKP
$\begin{array}{\|l} \hline \text { HLA/ } \\ \text { HLB } \\ \hline \text { HLAG/ } \\ \text { HLBG } \\ \hline \end{array}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & \text {-*-HC }^{-} \\ & \hline \end{aligned}$

RV3sis

How to order

- Compact rotary actuator (angle variable type) RV3*A

Note on model no. selection
Note 1: If "Without angle assignment" is selected, the reference point stopper will be mounted and the angle setting stopper will be enclosed. Mount the stopper if necessary.
Note 2: The required angle is set to the approximate angle from the oscillation origin, so always adjust the final angle with the fine adjust screw before starting use.
Note 3: Two switches are enclosed.
Note 4: If the type with switch is selected, the switch unit will be enclosed with the shipped product. Adjust the external stopper and then install the switch.
Note 5: If the type with switch is selected, the
"K" protective cover cannot be selected.
Note 6: The mounting bracket (FA and LS) is attached when shipping. Refer to Page 104 for dimensions.

<Example of model number>

RV3SA3-0-45-FR-FA
Model: Compact rotary actuator angle variable type
A Model no. : RV3SA
(B) Size : 3

C Oscillating angle: Without angle assignment
(D) Oscillating origin: 90°
(E) Switch type
: Axial lead wire with switch
(F) Option : With flange bracket

How to order switch unit
RV3S: AR-3 = A Model
<Example of model number>

RV3S-FR-3-U

Model: Switch unit angle variable type
(A) Model

B Lead wire outlet direction
: Radial lead wire

Oscillating origin position / oscillating time setting
Oscillating origin position

Oscillating origin 45°
RV3SA30

RV3DA3 to 30

Note 1: Tolerance of oscillating origin is based on set screw position.
Oscillating time setting

1. Use oscillating time within range of below table. If used with exceeding this range, smooth operation can not be obtained due to stick and slip, etc.

- RV3 ${ }^{\text {s }} \mathrm{A} 20$

RV3sis ${ }_{\text {series }}$

- RV3SDA*

* The internal structure of the rotary actuator is the same as the compact rotary actuator RV3s.

Refer to Page 68 for details.

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Stopper L	Steel	Reference point	5	Jaw mounting bolt	Steel	
2	Lock nut	Steel		6	Stopper R	Steel	
3	Fine adjustment screw	Steel		7	Stopper mounting bolt	Angle setting	
4	Jaw	Steel					

RV3sis ${ }_{\text {series }}$

Dimensions

Compact/angle variable type

Dimensions

- RV3DA10

- RV3 ${ }^{\text {s }} \mathrm{A} 10$-*-FR (U)

■ Axial lead wire

RV3s.A10-*-K (with protective cover)

RV3 ${ }^{\text {sin }} \mathrm{A}_{\text {series }}$

Dimensions

nding
RV3ㅇ́A20-*-K (with protective cover)

Compact/angle variable type
Dimensions

* The key is attached. Refer to Page 105 for the key dimensions.

- RV3DA30

RV3́A30-*-FR (U)
\square Axial lead wire

RV3sA30-*-K (with protective cover)

* M0 switch can be used for 24VAC and 48VAC within load current range of 7 to 20 mA .

RV3 ${ }^{\text {s }}$ Series

Operational principle

Operational principle

- Single vane

1. Configured with vane sliding inside of body, shaft, and shoe (stopper).
2. Air from port A pushes vane rotates shaft, and generates torque.
3. Air in opposite room is exhausted from port B , and shaft rotates clockwise.
4. Vane stops when it contacts to shoe.
5. Air supply from port B causes counterclockwise rotation in the same manner.

- Double vane

1. Configured with two vanes sliding inside of body, integrated shaft, and shoe (stopper).
2. Air from port A pushes vane, and goes through passage in shaft, pushes another vane, turns shaft, and finally generates torque.
3. Rotating in the same manner of single vane.

How to order

- Large rotary actuator (standard type) RV3*

A

Model no.

A Model no.

Single vane mechanism	Double vane mechanism

| Symbol \quad Descriptions |
| :--- | :--- |

RV3S
RV3D

B Nominal size

$\mathbf{5 0}$	Effective torque 0.5 MPa	$4.7 \mathrm{~N} \cdot \mathrm{~m}$	$10.1 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{y n n} \mathbf{1 5 0}$		$34.3 \mathrm{~N} \cdot \mathrm{~m}$	
$\mathbf{3 0 0}$		$27.9 \mathrm{~N} \cdot \mathrm{~m}$	$66.6 \mathrm{~N} \cdot \mathrm{~m}$

© Oscillating angle

90	90°		\bigcirc	\bigcirc
100	100°			\bigcirc
180	180°		\bigcirc	
270	270°		\bigcirc	
280	280°	$\begin{aligned} & \binom{\text { The type with switch is not available }}{\text { when the shock absorber is selected. }} \end{aligned}$	\bigcirc	

D Oscillating origin

A. Note on model no. selection
$\begin{array}{l}\text { Note 1: Refer to below table for the relevant of the } \\ \text { oscillating angle and oscillating origin. }\end{array}$
Relevant of oscillating angle and oscillating origin
D Oscillating origin
COscillating angle
:---:
100°
180°
270°
280°

Note 2: The mounting bracket (FA and LS) is attached when shipping. Refer to Page 104 for dimensions.
Note 3: Refer to Page 106 for shock absorber (C).
Note 4: The switch cannot be installed with the oscillating angle 280 shock absorber.
<Example of model number>
RV3S50-90-45-M2V-D-C
Model: Large rotary actuator
(A) Model no.

RV3S
B Size : 50
C Oscillating angle : 90°
D Oscillating origin
E Switch type
F Switch quantity
© Option

40	40°	\bigcirc	\bigcirc
45	45°	\bigcirc	\bigcirc

Oscillating origin position

Oscillating origin 40°
RV3*50 to 300

How to order switch unit

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
BHA
BHG
LHA
LHAG
HKP
HLA/
HLB
HLAG/
HEBG
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG

Oscillating time setting

1. Use oscillating time within range of below table. If used with exceeding this range, smooth operation can not be obtained due to stick and slip, etc.
(s)

Model no.	Oscillating angle					
	90°	100°	180°	270°	280°	
RV3 $^{\text {s }} 50$	0.08 to 0.8	0.09 to 0.9	0.16 to 1.6	0.24 to 2.4	0.25 to 2.5	
RV3 $^{\text {s }} 150$	0.12 to 1.2	0.13 to 1.3	0.24 to 2.4	0.36 to 3.6	0.37 to 3.7	
RV3 $^{\text {S }} 300$	0.16 to 1.6	0.17 to 1.7	0.32 to 3.2	0.48 to 4.8	0.49 to 4.9	

RV3 ${ }^{\mathrm{s}}$ Series

| RRC |
| :--- | :--- |
| GRC |
| RV3* |
| NHS |
| HR |
| LN |
| FH100 |
| HAP |
| BSA2 |
| BHA |
| BHG |
| LHA |
| LHAG |
| HKP |
| HLA/ |
| HLB |
| HLAG/ |
| HEB |
| Ending |
| HCP |
| FK |
| HMF |
| CKLB2 |
| SCK |
| FKCK |
| HMFB |
| CKL2 |
| CKF |
| CKK |
| HFP |
| HLC |
| HGP |
| FH500 |
| HBL |
| HDL |
| HMD |
| HJL |
| BHE |
| CKG |
| HKS |

Internal structure and parts list

- RV3S50/150/300

- RV3D50/150/300

No.	Parts name	Material	Remarks	No.	Parts name	Material	Remarks
1	Body A	Aluminum alloy die-casting		6	Shoe sealant	Nitrile rubber	
2	Body B	Aluminum alloy die-casting		7	Damper	Resin	
3	Vane shaft	Steel		8	O ring	Nitrile rubber	
4	Vane sealant (vane shaft)	Nitrile rubber		9	Bearing	Sintering oil impregnated material	
5	Shoe	Zinc alloy die-casting		10	O ring	Nitrile rubber	

Refer to page 116 for the repair parts list.

RV3 ${ }^{\mathrm{s}}$ Series
Large/standard type

Dimensions CAD

| RRC |
| :--- | :--- |
| GRC |
| RV3* |
| NHS |
| HR |
| LN |
| FH100 |
| HAP |
| BSA2 |
| BHA
 BHG
 LHA
 LHAG
 HKP
 HLA/
 HLB
 HLAG/ |

Symbol Model no.	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	Keyway WähXOephXXLengtit	U	W	V	Z	X	X'	Y	Y^{\prime}
RV3 ${ }_{\text {D }}^{\text {S }} 50$	79	145	19.5	86	39.5	12	25	29	2.5	10	13	36	16	Rc1/8	45	M6 depth 9	5	28	$4 \times 2.5 \times 20$	57	44	68	58	20	5	11	3
RV3 ${ }_{\text {D }}^{\text {S }} 150$	110	180	23.5	103	53.5	17	30	34.5	3	13	16	51	24	Rc1/4	70	$\begin{array}{\|c\|} \hline \text { M8 } \\ \text { depth } 12 \\ \hline \end{array}$	5	34	$5 \times 3 \times 36$	85	61	97	85.2	23.5	6	10.5	5
RV3 ${ }_{\text {D }} 300$	141.5	220	30	125	65	25	45	41.5	3.5	19	22	66	32	Rc3/8	80	$\begin{array}{\|c\|} \hline \text { M10 } \\ \text { depth } 15 \end{array}$	5	42	$7 \times 4 \times 40$	98.5	78	125	110	27.5	8	13	4.5

With switch

Oscillating origin 45°

* The key is attached. Refer to Page 105 for the key dimensions.

Oscillating origin 40°
-T

* The key is attached. Refer to Page 105 for the key dimensions.

$\begin{array}{\|l\|} \hline \text { Symbol } \\ \hline \text { Model no. } \end{array}$	A	B1	B2	C1	C2	D	E	F	G	H	J	M	N	P	Q	R	S	T	V	W1	W2	Keyway Widh X Depin X Length
RV3 $\mathrm{S}_{\mathrm{D}} 50$	79	157.7	177.2	31	50.5	87.2	39.5	12	25	29	2.5	36	16	Rc1/8	45	$\begin{gathered} \text { M6 } \\ \text { depth } 9 \end{gathered}$	5	28	54	47	58	$4 \times 2.5 \times 20$
$\mathrm{RV} 3^{\text {S }} 150$	110	188.7	214.2	31	56.5	104.2	53.5	17	30	34.5	3	51	24	Rc1/4	70	$\begin{gathered} \text { M8 } \\ \text { depth } 12 \end{gathered}$	5	34	71.5	61	72	$5 \times 3 \times 36$
$\mathrm{RV3}_{\mathrm{D}}^{\mathrm{S}} 300$	141.5	222.2	253.7	31	62.5	126.2	65	25	45	41.5	3.5	66	32	Rc3/8	80	$\begin{gathered} \text { M10 } \\ \text { depth } 15 \end{gathered}$	5	42	96	69	88	$7 \times 4 \times 40$

RRC
RV3
RHS
Specifications

- Single vane mechanism

Descriptions	RV3SV/RV3SW										
Size	50			150				300			
Effective torque N.m	4.7			14.7				27.9			
Actuation	Single vane										
Working fluid	Compressed air										
Max. working pressure MPa	0.7										
Min. working pressure MPa	0.2 Note 1										
Withstanding pressure MPa	1.05										
Ambient temperature ${ }^{\circ} \mathrm{C}$	5 to 50										
Port size (intake)	Rc1/8			Rc1/4				Rc3/8			
Port size (exhaust)	M5			Rc1/4							
Oscillaing angle tolerance degree				$90^{+3} 1800^{+3} \mid 2700^{+3} 2800^{+3}$							
Oscillating origin degree		45	40		45		40		45		40
Allowale energy absoption Wes ${ }^{\text {2 }} \mathrm{mJ}$	49			225				1078			
Maximum cycle rate Wee 3 cyclemm	180	60			80		0	90	60	40	
Volumetric capacity cm^{3}	51	$1 \quad 61$	62		46	179	185	244	283	352	365
Allowable radial load N	588			1176				1960			
Allowable thrust load N	44.1			88.2				147			
Incorporated solenoid valve	4KB119/4KB129			4KB219/4KB229							
Weight kg	0.9	.9 0.84	0.81			2.0	1.9		4.1		4.0
Lubrication	Not required (when lubricating, use turbine oil Class 1 ISO VG32.)										

Descriptions	RV3DV/RV3DW					
Size	50		150		300	
Effective torque N.m	10.1		34.3		66.6	
Actuation	Double vane					
Working fluid	Compressed air					
Max. working pressure MPa	0.7					
Min. working pressure MPa	0.2					Note 1
Withstanding pressure MPa	1.05					
Ambient temperature ${ }^{\circ} \mathrm{C}$	5 to 50					
Port size (intake)	Rc1/8		Rc1/4		Rc3/8	
Port size (exhaust)	M5		Rc1/4			
Oscillating angle tolerance degree	90+3	$100+3$	90_{+0}^{+3}	$100{ }_{+0}^{+3}$	$90+3$	$100+3$
Oscillating origin degree	45	40	45	40	45	40
Allowable energy absorption Nie2 mJ	49		225		1078	
Maximum cycle rate Note 3 cycle/min	180		120		90	
Volumetric capacity cm^{3}	42	43	127	123	244	271
Allowable radial load N	588		1176		1960	
Allowable thrust load N	44.1		88.2		147	
Incorporated solenoid valve	4KB119/4KB129		4KB219/4KB229			
Weight kg	0.93	0.91	2.3	2.2	4.7	4.5
Lubrication	Not required (when lubricating, use turbine oil ISO VG32.)					

RV3siv Series

Torque: 50, 150, 300
Oscillating angle: $90^{\circ}, 100^{\circ}, 180^{\circ}, 270^{\circ}, 280^{\circ}$ JIS symbol
BSA2
BHA/
BHG
LHA
LHAG
HKP
HLA
HLB
HLAG
HLBG
Note 1: The minimum working pressure is 0.3 MPa when the optional shock absorber is selected.
Note 2: Calculate allowable energy with allowable inertia energy of shaft of rotary actuator as following.
(Allowable energy) $\geqq 21 \omega^{2} \times 10^{3}$ (Refer to Page 121 for detail.) If left formula is not satisfied, problems such as shaft broken may be caused.
Note 3: The maximum working frequency is at supply pressure 0.5 MPa <in no load state>.
Note 4: A key is enclosed with the rotary actuator with keyway
Note 5: Consult with CKD for products other than standard specifications.

RoHS
CAD

Valve specifications

Descriptions	Specifications (4KB	eries) Note 2	
Rated voltage Note 1 V	100 VAC ($50 / 60 \mathrm{~Hz}$)	200 VAC ($50 / 60 \mathrm{~Hz}$)	24 VDC
Starting current A	0.056/0.044	0.028/0.022	0.075
Holding current A	0.028/0.022	0.014/0.011	
Power consumption W	1.8/1.4		1.8
Voltage fluctuation range	$\pm 10 \%$		
Insulation class	Class B molded coil		

Note 1: 100 VAC and 200 VAC are available with 110 VAC and 220 VAC(60 Hz).
Note 2: Refer to page 75 for the specifications of 4KB1 Series.
Note 3: Refer ro "Pneumatic Valves (No. CB-23SA)" for detail on valve.

Switch specifications

Descriptions	Proximity 2 wire	Proximity 3 wire
	M2V	M3V
Applications	Programmable controller	Programmable controller, relay, IC circuit, small solenoid valve
Output method	-	NPN output
Power voltage	-	4.5 to 28 VDC
Load voltage/current	$\begin{gathered} 10 \text { to } 30 \mathrm{VDC}, \\ 5 \text { to } 30 \mathrm{~mA} \end{gathered}$	30 VDC or less, 200 mA or less
Light		lighting)
Leakage current	1 mA or less	$10 \mu \mathrm{~A}$ or less
Descriptions	Reed 2 wire	
	M0V	M5V
Applications	Programmable controller, relay	Programmable controller, reray, IC circuit (no light), serial connection
Load voltage/current	5 to 50 mA with $12 / 24$ VDC 7 to 20 mA with 110 VAC	50 mA or less with $5 / 12 / 24$ VDC 20 mA or less with 110 VAC
Light	LED (ON lighting)	no light
Leakage current	OmA	

* M0 switch can be used for 24VAC and 48VAC within load current range of 7 to 20 mA .

Operational principle

(1) Single solenoid

Vane returns to an oscillating origin position during a solenoid valve OFF.
(2) Double solenoid

When the solenoid valve A solenoid is ON, the vane returns to the oscillating origin position.

When the solenoid valve B solenoid is ON, the vane moves in the oscillating direction.

The double solenoid type solenoid valve maintains the self-hold state when both the A solenoid and B solenoid are OFF.
However, the valve must be energized while the vane is moving.

Ending

How to order

- Large rotary actuator (with valve) RV3*w RV3S V $150-90-45-1-M 2 V-R-C$

A Model no.
Single vane mechanism Double vane mechanism

Symbol	Descriptions
B Valve	

B Valve

V	Single solenoid		\bigcirc
W	Double solenoid		\bigcirc

C Nominal size

$4.7 \mathrm{~N} \cdot \mathrm{~m}$
$14.7 \mathrm{~N} \cdot \mathrm{~m}$
$27.9 \mathrm{~N} \cdot \mathrm{~m}$

| $10.1 \mathrm{~N} \cdot \mathrm{~m}$ |
| :--- | :--- |
| $34.3 \mathrm{~N} \cdot \mathrm{~m}$ |
| $66.6 \mathrm{~N} \cdot \mathrm{~m}$ |

D Oscillating angle

90	90°		-	\bullet
100	100°			\bullet
180	180°		\bullet	
270	270°		\bullet	
280	280°	($\left.\begin{array}{l}\text { The type with switch is not available } \\ \text { when the shock absorber is selected. }\end{array}\right)$	\bullet	

Oscillating origin Note 1

E Oscillating origin			
40	40°	\bullet	\bullet
45	45°	\bullet	\bullet

Note on model no. selection
Note 1: Refer to below table for the relevant of the oscillating angle and oscillating origin.
Relevant of oscillating angle and oscillating origin

D) Oscillating origin	40°	45°
C)Oscillating angle		
90°		
100°		
180°		
270°		
280°		

Note 2: The mounting bracket (FA and LS) is attached when shipping. Refer to Page 104 for dimensions.
Note 3: Refer to Page 106 for shock absorber (C). Note 4: The switch cannot be installed with the oscillating angle 280 shock absorber.

I Option Note 2, Note 3 Note 4

Switch quantity

F Valve voltage			
$\mathbf{1}$	100 VAC	$\boldsymbol{0}$	\boldsymbol{O}
$\mathbf{2}$	200 VAC		0
$\mathbf{3}$	24 VDC	$\boldsymbol{0}$	0

Switch type

H Swich quantit

H) Switch quantity

R	With clockwise rotation detection 1 piece	\bigcirc			\bigcirc		
L	With counterclockwise detection 1 piece	\bigcirc			\bigcirc		
D	Two	\bigcirc			\bigcirc		
(1) Option							
Nominal size		50	150	300	50	150	300
Blank	No option	\bigcirc	-	-	\bigcirc	\bigcirc	-
FA	With flange bracket	\bigcirc	\bigcirc		\bigcirc	\bigcirc	
LS	With foot bracket	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
C	With shock absorber	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

<Example of model number>
RV3SV150-90-45-M2V-R-C
Model: Large rotary actuator with valve
A Model no. : RV3S
B Valve : Single solenoid
C Size : 150
(D) Oscillating angle : 90°
(E) Oscillating origin : 45°
(E) Valve voltage
: 100 VAC
© Switch type
: M2V switch, lead wire length 1m
$\boldsymbol{\oplus}$ Switch quantity
: With clockwise rotation detection 1 piece
Option
: With shock absorber

How to order switch unit

RVU50-C-90-M2V-R
Model: Switch unit
(A) Model: RV3S/D50
(B) Unit type: With shock absorber
(C) Oscillating angle: 90°
(D) Switch model no.: M2V switch, lead wire length 1 m
© Switch quantity: Clockwise rotation detection 1 piece

RV3siv Series

din iw 150/300

$\begin{gathered} \text { Symbol } \\ \hline \text { Model no. } \end{gathered}$	A	B	C	D	E	F	G	H	J	K	L	M	N	Rc	Rc'	Q	R	S	T	V	W	$\begin{aligned} & \text { Weyway } \\ & \text { KodhXepphiXLengith } \end{aligned}$
RV3*V150	110	180	23.5	103	53.5	17	30	36	3	13	16	79	62	1/4	1/4	70	M8 depth 12	5	41	65	70	$5 \times 3 \times 36$
$\underline{\mathrm{RV} 3 *}$ V300	141.5	220	30	125	65	25	45	47.5	3.5	19	22	95	72	3/8	1/4	80	M10 depth 15	5	50.5	80	70	$7 \times 4 \times 40$

Min. oscillating time

Descriptions		RV3*H50	RV3*H150	RV3*H300	Vane number
	90°	0.3	0.4	0.4	Single vane
Oscillating angle	180°	0.5	0.7	0.7	
	270°	0.7	0.9	1.0	
	280°	0.7	1.0	1.9	
	90°	0.6	1.3	2.1	
	100°	0.7	1.4		

Structure
A basic structure is as pneumatic and same completely.

Descriptions Port size		RV3*H50	RV3*H150	RV3*H300
Orifice	Low hydraulic specilications	$\phi 7$	Rc1/4	Rc3/8
	Pneumatic	$\phi 2.8$	$\phi 9.5$	$\phi 13$

Note: If double vane, as same as pneumatics, since orifice of shaft is not changed.

- Volumetric capacity

Rotary actuator	Port size					
		100°	180°	270°	280°	
	51	-	51	61	62	Rc1/8
	42	43	-	-	-	
	146	-	146	179	185	Rc1/4
	127	123	-	-	-	
RV3SH300	244	-	283	352	365	Rc3/8
RV3DH300	244	271	-	-	-	

RRC

RV3sis
 Series

How to order

- Large rotary actuator (low hydraulic type) RV3*H

Oscillating angle

(D) Oscillating origin Note 1

		A Model no.	
		Single vane mechanism	Double vane mechanism
		RV3SH	RV3DH
Symbol	Descriptions		
B Nominal size			
50	Effective torque 0.5 MPa	4.7N.m	$10.1 \mathrm{~N} \cdot \mathrm{~m}$
150		$14.7 \mathrm{~N} \cdot \mathrm{~m}$	$34.3 \mathrm{~N} \cdot \mathrm{~m}$
300		27.9N.m	$66.6 \mathrm{~N} \cdot \mathrm{~m}$

C Oscillating angle

90	90°	\bullet	\bullet
100	100°		\bullet
180	180°	\bullet	
270	270°	\bullet	
280	280°	\bullet	

(D) Oscillating origin

Note on model no. selection
Note 1: Refer to below table for the relevant of the oscillating angle and oscillating origin. Relevant of oscillating angle and oscillating origin

(D) Oscillating origin	40°	45°
C) Oscillating angle		
90°		
100°		\bullet
180°		\bullet
270°		
280°		

Note 2: The mounting bracket (FA and LS) is attached when shipping. Refer to Page 104 for dimensions.
Note 3: Refer to Page 106 for shock absorber (C).
Note 4: The switch cannot be installed with the
oscillating angle 280 shock absorber.
<Example of model number>
RV3SH50-90-45-M2V-D-C
Model: Large rotary actuator low hydraulic type
A Model no.
: RV3SH
B Size
: 50
C) Oscillating angle : 90°

Oscillating origin : 45°
E Switch type
: M2V switch, lead wire length 1 m
(F) Switch quantity : With clockwise rotation detection 1 piece

Option With shock absorber

How to order switch unit

RVU50-C-90-M2V - R				
(A) Model	Symbol	Descriptions		
	A Model			
	RVU50	Applicable actuator: RV3S/D50		
	RVU150	Applicable actuator: RV3S/D150		
	RVU300	Applicable actuator: RV3S/D300		
	B Unit type			
B Unit type	Blank	Standard products		
	C	With shock absorber		
	C Oscillating angle			
(C) Oscillating angle	90	90°		
	100	100°		
	180	180°		
	270	270°		
	280	280° ("C" (for shock absorber instalataion) cannot be selected.)		
	(Switch model no.			
(D) Switch model no.	M2V*	長	1 color indicator type	2-wire
	M3V*			3-wire
	MOV*			2-wire
	M5V*		no light	
	*Lead wire length			
	Blank	1m (standard)		
	3	3m (option)		
. Note on model no. selection	5	5m (option)		
Note: When selecting the type for shock absorber, the shock absorber unit must be purchased separately. (E) Switch quantity	E Switch quantity			
	R	With clockwise rotation detection 1 piece		
	L	With counterclockwise detection 1 piece		
	D	Two		

RVU50-C-90-M2V-R

Model: Switch unit
A Model: RV3S/D50
(B) Unit type: With shock absorber
(C) Oscillating angle: 90°
(D) Switch model no.: M2V switch, lead wire length 1 m
(E) Switch quantity: Clockwise rotation detection 1 piece

Dimensions

It is the same as the large rotary actuator vane mechanism/standard type RV3SD Series. Refer to page 93.

RV3*

Flange bracket, foot bracket dimensions

Model	A	B	C	D	E	F	G	H	I
$\mathrm{RV}^{*} 50$	64	80	7	39.5	35	4.5	45	30	$\mathrm{M} 6 \times 12$
$\mathrm{RV}^{*} 150$	88	110	9	53.5	47.5	6	70	37	$\mathrm{M} 8 \times 12$

Note 1: One bracket and mounting bolt (required quantity) are delivered.
Note 2: Flange bracket is not available for $\mathrm{RV}^{*} 300$.

> | Model | A | B | C | D | E | F | G | H | J | K | L | N | O |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{RV} \mathrm{V}^{*} 0$ | 55 | 75 | 11 | 45 | 82.5 | 35 | 27.5 | 4.5 | 10 | 25 | 45 | 30 | $\mathrm{M} 6 \times 12$ |
| $\mathrm{RV}^{*} 150$ | 80 | 110 | 13 | 65 | 115 | 43.5 | 33.5 | 10 | 12 | 28 | 70 | 37 | $\mathrm{M} 8 \times 22$ |
| $\mathrm{RV}^{*} 300$ | 100 | 140 | 15 | 80 | 135 | 53 | 40.5 | 12 | 13 | 32 | 80 | 52 | $\mathrm{M} 10 \times 28$ |

Key

Dimensions
The rotary actuator of the type with keyway attaches each following key.
JIS B1301 parallel key $\mathrm{b} \times \mathrm{h} \times \ell$ double round S45C

Unit: mm

Model no.	Norminal key	b	h	ℓ	C	R
RV3*20	$3 \times 3 \times 16$	$3{ }_{-0.025}^{0}$	$3{ }_{-0.025}^{0}$	$16{ }_{-0.18}^{0}$	$\begin{aligned} & 0.16 \text { to } 0.25 \\ & \text { (R0.16 to } 0.25) \end{aligned}$	1.5
RV3*30	$4 \times 4 \times 18$	$4{ }_{-0.03}^{0}$	$4{ }_{-0.03}^{0}$	$18{ }_{-0.18}^{0}$	$\begin{aligned} & 0.16 \text { to } 0.25 \\ & (R 0.16 \text { to } 0.25) \\ & \hline \end{aligned}$	2
RV3*50	$4 \times 4 \times 20$	$4{ }_{-0.03}^{0}$	$4{ }_{-0.03}^{0}$	$20{ }_{-0.21}^{0}$	$\begin{gathered} 0.16 \text { to } 0.25 \\ (\text { R0.16 to } 0.25) \\ \hline \end{gathered}$	2
RV3*150	$5 \times 5 \times 36$	$5{ }_{-0.03}^{0}$	$5{ }_{-0.03}^{0}$	$36{ }_{-0.25}^{0}$	$\begin{aligned} & 0.25 \text { to } 0.40 \\ & (R 0.25 \text { to } 0.40) \\ & \hline \end{aligned}$	2.5
RV3*300	$7 \times 7 \times 40$	$7_{-0.036}^{0}$	$7{ }_{-0.036}^{0}$	$40{ }_{-0.25}^{0}$	$\begin{aligned} & 0.25 \text { to } 0.40 \\ & \hline \text { R0. } 25 \text { to } 0.40) \\ & \hline \end{aligned}$	3.5

Operational principle
Operational principle
RRC
If jaws installed on the rotary actuator shaft collide with the piston, action is converted to hydraulic pressure on the back of the piston that becomes thermal energy when it passes through the gap between the piston and cylinder inner diameter and the adjustment needle. It is radiated from the main device surface and consumed when the piston stops at the stroke end. The piston on the side is pressurized by the spring force and returns to the origin.

Shock energy

1. Obtain the moment of inertia from the size of the load, and confirm that it is within the load range.
2. Check that the collision angle speed is within the range.

$$
\omega_{0} \fallingdotseq 1.2 \omega
$$

ω_{0} : Collision angle (rad/s)
ω : Average angle speed (rad/s)
3. Obtain collision energy from the load and collision angle speed.
$E_{1}=1 / 2 \mid \omega_{0}{ }^{2}$
I : Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
ω_{0} : Collision angle (rad/s)
4. Obtain energy generated by the rotary actuator torque.
$E_{2}=1 / 2 T \theta^{\prime}$
T : Torque of rotary actuator ($\mathrm{N} \cdot \mathrm{m}$)
θ^{\prime} : Shock absorber absorption angle (per side) (rad)
5. Confirm that $E_{1}+E_{2}$ is less than the maximum absorption energy.
6. Obtain energy per minute from frequency.
$E_{m}=\left(E_{1}+E_{2}\right) \times n$
n : No. of times jaws contact cushion piston.
Confirm that Em is less than the maximum energy per minute.
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
BHA/
BHG
LHA
LHA
LHAG
HKP

- RVC50/150/300

RRC
GRC
RV3
NHS
HR
LN
FH100
HAP
BSA2
BHA
BHG
LHA
LHAG
HKP
HLA/
HLB
HLBG
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD

Note: Figure shows one mounting jaw for 270°.

Symbol Model no.	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	U	V	W	Y	Z	AA	BB	CC	DD	EE
RVC50	50.5	6	32	4.5	14	16	8.5	14.4	56.6	9.9	40	50	4	37	7.1	17	9.2	8	7.2	39	56	R12.5	R45	6.5	30	M6X12l	34	8
RVC150	56.5	7.2	36	4.5	16	18	8.5	18.4	70.71	11.3	50	62	9.5	49	8.4	25.5	11.4	10	8	60.6	80	R15	R70	10	30	M8×16l	46	12
RVC300	62.5	7.2	42	4.5	16	21	12	22.5	91.9	12.7	65	87	8	61	14.2	33.2	14.1	12	12	69.2	95	R22.5	R80	15	30	M10×20l	62	18

Jaw for shock absorber dimensions

- Oscillating angle 90° (oscillating origin 45°) CAD
- Oscillating angle 100° (oscillating origin 40°)

Material: S50C or equivalent

Symbol Model no.	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q
RVC50-90-T	23	10	16	13.7	10	1.2	2.5	10	M5	7	76	18	18.5	8	5
RVC150-90-T	28	12	24	19.5	12	1.2	3.9	13	M6	7.5	102	20	23	10	5
RVC300-90-T	40	18	35	30.5	14	1.2	5.4	19	M8	9	136	23.5	33.5	12	9

CKD

Material: S50C or equivalent

Oscillating angle 280° (oscillating origin 40°)

Material: S50C or equivalent

Symbol	A	B	C	D	F	G	H	J	K	L	M	N	P
Model no.													
RVC50-280-T	23	13	16	13.5	1.2	5	10	M5	7	37	20	4.5	10
RVC150-280-T	28	16	24	19.5	1.2	8	13	M6	9	51	20	5	10
RVC300-280-T	40	22	35	30.5	1.2	11	19	M8	11	68	24	6.5	12.5

Oscillating angle 270° (oscillating origin 45°) CAD

Material: SCM435 or equivalent

Oscillating angle 100° (with magnet)

Symbol	C	H	K	L	M	N	P
Model no.	C	Material: S50C or equivalent					
RVU50-100-A1-C	26	10	8	74	18	8.5	8
RVU150-100-A1-C	32	13	9	102	20	11	10

Refer to RVC300-100-T dimensions for RVU300-100-A1-C.

RV3*

Switch unit: Compact type standard with valve
Specifications

How to order

- How to order switch unit

: Radial lead wire

Switch unit

Switch wiring procedure

Rotary actuator	Operational range	Hysteresis
RV3 $S_{D}^{S}-3$	$15^{\circ} \pm 7^{\circ}$	3° or less
RV3 $_{D}-10$		
RV3		

Switch unit configurations

Configurations

- Rotor set screw

Rotor
Switch unit set screw

- Switch unit

* Switch unit can be installed onto rotary actuator without switch. RV3S1 with switch is not available.

RV3＊

RRC
GRC

Switch unit：Compact oscillating angle variable types Specifications
RRC ${ }^{*}$

Descriptions	Proximity switch	
	FR－＊（－U）	
Applications	Programable controller，reray，IC circuit	
Power voltage	5 to 30 VDC	
Load voltage	5 to 30 VDC	
Load current range	5 mA to 200 mA	
Current consumption	20 mA or less with 24 VDC 10 mA or less with 12 VDC 4 mA or less with 5 VDC	
Internal voltage drop	1.5 V or less	
Light	LED（ON lighting）	
Leakage current	$10 \mu \mathrm{~A}$ or less	
Lead wire length	1.0 m （oil resistance black conductor 3 code）	
Maximum shock resistance	$490 \mathrm{~m} / \mathrm{s}^{2}$	
Insulation resistance	$100 \mathrm{M} \Omega$ and over with 500 V mega	
Withstand voltage	No failure when 1500 VAC is applied for one minute	
Ambient temperature	5 to $60^{\circ} \mathrm{C}$	
Protective structure	IEC standards IP67，JIS C0920（water tight type）	
＊mark indicates a rotary actuator size．（ $3,10,20,30$ ）		
Hysteresis of switch and operational range		
Switch typ	Operational range	Hysteresis
CT－3	$23^{\circ} \pm 7^{\circ}$	Approx． 2°

How to order
－Switch unit

Symbol	Descriptions
A Model	
FR－3	Applicable actuator：RV3 ${ }^{\text {S }}$ A3
FR－10	Applicable actuator：RV3⿺辶 ${ }^{\text {S }} 10$
FR－20	Applicable actuator：RV3⿺辶 ${ }^{\text {S }} 20$
FR－30	Applicable actuator：RV3⿺辶 ${ }^{\text {S }}$（30
B Lead wire outlet direction	
Blank	Without switch
U	Radial lead wire with switch

Model：Switch unit angle variable type
U \quad Radial lead wire with switch

Switch internal wiring diagram

Switch wiring procedure

DC power supply for switch

Oscillating angle and switch installation position

- When selecting the oscillating angle variable type RV3*A Series with switch, the switch unit is enclosed with the product. Install and adjust the angle setting stopper at the set angle, and then install the switch with the following combination.

Oscillating angle	Switch combination
30° to 186°	Combination A
187° to 270°	Combination B

Switch unit assembly and switch adjustment method

- Installing the switch unit

Install the switch onto the rotary actuator body using the switch case mounting screw. Refer to below table for the tightening torque.

Model no.	Tightening torque (N•m)
RV3 ${ }_{\mathrm{S}}^{\mathrm{S}} \mathrm{A} 3$	0.06 to 0.2
RV3 S A 10	0.1 to 0.2
RV3 $\mathrm{S}_{\mathrm{S}} \mathrm{A} 20$	0.2 to 0.3
RV3 $\mathrm{S}_{\mathrm{S}} \mathrm{A} 30$	

- Switch position adjustment

Loosen the switch adjust screw, set the switch's maximum sensitivity position to the angle scale which corresponds to the rotary actuator's set angle, and then fix the switch. Tighten with a tightening torque of 40 to $50 \mathrm{~N} \cdot \mathrm{~cm}$. The angle scale is a guide, so confirm that the LED turns ON when making the final adjustment.

- Switch change

Remove the switch adjusting screw and plate fixing screw, and then replace the switch.
Assemble the switch following the removal steps in reverse, and always adjust the switch position.

RV3*

Large switch unit: Standard type/with valve, low hydraulic type Specifications

Descriptions	Proximity 2 wire	Proximity 3 wire	Reed 2 wire	
	M2V	M3V	M0V	M5V
Applications	Programmable controller	Programmable controller, relay, IC circuit, small solenoid valve	Programmable controller, relay	Programmable controller, reray, IC circuit (no light), serial connection
Power voltage	-	4.5 to 28 VDC	-	
Load voltage/current	10 to 30 VDC, 5 to 30 mA	30 VDC or less, 200 mA or less	5 to 50 mA at $12 / 24 \mathrm{VDC}$, 7 to 20 mA at 110 VAC	50 mA or less with $5 / 12 / 24$ VDC 20 mA or less at 110 VAC
Current consumption	-	10 mA or less at DC24 (when turned ON)		
Internal voltage drop	4 V or less	0.5 V or less	2.4 V or less	OV
Light	LED (ON lighting)			no light
Leakage current	1 mA or less	$10 \mu \mathrm{~A}$ or less	0 mA	
Lead wire length	$1 \mathrm{~m}\left\{\begin{array}{l}\text { Oil resistant vinyl cabtire } \\ \text { cable } 2 \text { code } 0.2 \mathrm{~mm}^{2}\end{array}\right\}$	$1 \mathrm{~m}\left\{\begin{array}{l}\text { Oil resistant vinyl cabtire } \\ \text { cable } 3 \text { code } 0.15 \mathrm{~mm}^{2}\end{array}\right\}$	$1 \mathrm{~m}\left\{\begin{array}{l} \text { Oil resistant vinyl cabtire } \\ \text { cable } 2 \text { code } 0.2 \mathrm{~mm}^{2} \end{array}\right\}$	
Maximum shock resistance	$980 \mathrm{~m} / \mathrm{s}^{2}$		$294 \mathrm{~m} / \mathrm{s}^{2}$	
Insulation resistance	$100 \mathrm{M} \Omega$ and over at 500 VDC mega			
Withstand voltage	No failure when 1000 VAC is applied for one minute			
Ambient temperature range	-10 to $+60^{\circ} \mathrm{C}$			
Protective structure	IEC standards IP67, JIS C0920 (water tight type), oil resistance			

How to order

RVU50-C-90-M2V-R

D Two
Model: Switch unit
(A) Model: RV3S/D50

B Unit type: With shock absorber
(C) Oscillating angle: 90°
(D) Switch model no.: M2V switch, lead wire length 1 m
(E) Switch quantity: Clockwise rotation detection 1 piece

Switch unit
Switch internal circuit diagram

Switch adjustment method

When installing switch unit later, if clearance between switch and magnet are exceeding the range on the following drawing, adjust the clearance with bending bracket.

Descriptions	Operational range	
Model no.	M2V, M3V	M0V, M5V
RV3S50, RV3D50	Approx. 40°	Approx. 25°
RV3S150, RV3D150	Approx. 25°	Approx. 15°
RV3S300, RV3D300	Approx. 25°	Approx. 15°

Switch unit configurations

Switch unit (Standard) configurations
Jaw with magnet Jaw Boss Magnet Pan head machine screw Nut
Base bracket Base bracket Binding machine screw
Bracket for M type switch Insalalation band for M type swich Bracket Cross headed pan
Switch bracket LS bracket Holder Pan head machine screw Spring washer
M type switch

Switch unit (with shock absorber)
SWU

SW bracket with shock absorber (Including holding plate)
(Note) Shock absorber is not included in switch unit.
(Refer to page 106 for model no. of shock absorber.)

When purchasing switch other than standard switch unit, refer to pages 118 to 119 for repair parts kit.
The rotary actuator with switch can be assembled by attaching the switch unit to the rotary actuator without switch.

RRC	Repair parts list - Compact rotary actuator				
GRC	No./part name	\times No.	3	1	8
RV3*	Model	Kit No. Patrame	Vane shaft	Shoe sealant	O ring (each 2 pcs.)
NHS HR LN FH100	RV3S1	RV3S1-K		Approx. 10	$\phi 1 \times$ 3 3.8 (WXID)
HAP BSA2 BHA BHG LHA	RV3S3	RV3S3-K		Approx.14	$\phi 1.42 \times \phi 6.8$
LHAG HKP HLLA HLBG HEGG HEP	RV3S10	RV3S10-K		Approx. 26	$\phi 1.5 \times \phi 8$
HCP HMF HMFB HFP	RV3S20	RV3S20-K		Approx. 32	$\phi 2 \times \phi 10.5$
$\begin{array}{\|l\|} \hline \text { HLC } \\ \hline \text { HGP } \\ \hline \text { FH500 } \\ \hline \text { HBL } \end{array}$	RV3S30	RV3S30-K		Approx. 36	P-14
$\begin{gathered} \text { HDL } \\ \hline \text { HMD } \\ \hline \text { HJL } \\ \hline \text { BHE } \end{gathered}$	RV3D1	RV3D1-K		Approx. 10	$\phi 1 \times \phi 3.8$ (W×ID)
CKG CK CKA CKS	RV3D3	RV3D3-K		Approx.14	$\phi 1.42 \times \phi 6.8$
$\begin{aligned} & \text { CKF } \\ & \hline \text { CKJ } \\ & \hline \text { CKL2 } \\ & \hline \text { CKL2 } \\ & \hline-H C \end{aligned}$	RV3D10	RV3D10-K		Approx. 26	$\phi 1.5 \times \phi 8$
CKH2 CKLB2 CKCK SCKFK SJ	RV3D20	RV3D20-K			$\phi 2 \times \phi 10.5$
$\underbrace{\text { FK }}_{\text {Ending }}$	RV3D30	RV3D30-K		Approx. 36	P-14

Repair parts list

No. and pat neme	$\sim_{2} \mathrm{No}$.	4	6	8	10
Model	Kit No. Patname	Vane shaft	Shoe sealant	Oring (each 2 pos.)	Oring
RV3S50	RVS50-K			P-16	$\phi 1.8 \times \phi 56.2$
RV3S150	RVS150-K			P-22	$\phi 1.9 \times$ ¢ 82
RV3S300	RVS300-K			P-31	$\phi 3 \times \phi 105$
RV3D50	RVD50-K			P-16	$\phi 1.8 \times$ ¢ 56.2
RV3D150	RVD150-K			P-22	$\phi 1.9 \times$ ¢ 82
RV3D300	RVD300-K			P-31	$\phi 3 \times \phi 105$

| RRC |
| :--- | :--- |
| GRC |
| RV3* |
| NHS |
| HR |
| LN |
| FH100 |
| HAP |
| BSA2 |
| BHA |
| BHG |
| LHA |
| LHAG |
| HKP |
| HLA/ |
| HLB |
| HLAG/ |
| HLBG |
| HEP |
| HCR |

Repair parts kit

Part name	Kit No.	Appearance	Part name	Quantity
Jaw with magnet	- RVU50-A1 RVU150-A1 RVU300-A1		Jaw Boss Magnet Pan head machine screw Nut	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Base bracket	RVU50-A2 RVU150-A2 RVU300-A2		Base bracket Binding machine screw	1 2
Switch bracket	RVU50-A3 RVU150-A3 RVU300-A3		LS bracket Holder Pan head machine screw Spring washer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Switch mounting bracket for shock absorber installation	RVU50-A3-C RVU150-A3-C RVU300-A3-C		LS bracket Holder Pan head machine screw Spring washer	1 1 1
Jaw for shock absorber with magbet$\left[\begin{array}{l} \text { Refer to page tog tor } \\ \text { dimensions of the } \\ \text { types without swich. } \end{array}\right]$	RVU50-90-A1-C RVU150-90-A1-C RVU300-90-A1-C		Jaw Magnet Magnet holder Hexagon socket head cap bolt Pan head machine screw Spring washer	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
	RVU50-100-A1-C RVU150-100-A1-C RVU300-100-A1-C			
	RVU50-180-A1-C RVU150-180-A1-C RVU300-180-A1-C			

Repair parts kit
Repair parts kit

Part name	Kit No.	Appearance	Part name	Quantity
Jaw for shock absorber with magnet $\left(\begin{array}{l} \text { The jaw for the } 280^{\circ} \\ \text { shock absorber with } \\ \text { magnet is not } \\ \text { available. } \end{array}\right)$	RVU50-270-A1-C RVU150-270-A1-C RVU300-270-A1-C Refer to page 109 for dimensions of the types without switch.	Hexagon socket head cap bolt	Jaw Magnet Magnet holder Hexagon socket head cap bolt Pan head machine screw Spring washer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Bracket for M type SW	- RVU-00-A1		M type SW installation band Bracket Cross headed pan	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
Packing seal screw kit	RVU10-B1 RVU20-B1 RVU30-B1 RVU50-B1 RVU150-B1 RVU300-B1		O ring Gasket Cross headed pan Washer integrated cross headed Pan head machine screw	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
Valve kit			Valve Washer integrated cross headed Pan head machine screw Gasket	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$
Sub-base	RV3U10-B3 RV3U20-B3 RV3U30-B3 RV3U50-B3 RV3U150-B3 RV3U300-B3		Sub-base	1
Angle variable type switch			Switch	1

RV3*
 Series

Selection guide

RRC
GRC
RV3*
NHS
HR
LN
FH100
HAP
BSA2
$\begin{aligned} & \text { BHA/ } \\ & \text { BHG } \end{aligned}$
LHA
LHAG
HKP
$\begin{aligned} & \text { HLA/ } \\ & \text { HLB } \\ & \hline \text { HLAG/ } \\ & \text { HLBG } \\ & \hline \end{aligned}$
HEP
HCP
HMF
HMFB
HFP
HLC
HGP
FH500
HBL
HDL
HMD
HJL
BHE
CKG
CK
CKA
CKS
CKF
CKJ
CKL2
$\begin{aligned} & \text { CKL2 } \\ & -{ }_{-}^{*}-\mathrm{HC} \end{aligned}$
CKH2
CKLB2
NCKI SCKFCK
FJ
FK
Ending

Rotary actuator selection method

Select based on the followig procedures.

STEP 1 Size (torque) selection

(1) Static load
(2) Resistance load
(3) Inertia load

STEP 1 Size (torque) selection

The torque is largely divided into three types according to the type of load.
In each case, the required torque must be calculated. If the load is a compound load, add each torque to calculate the required torque.
Refer to the output table (effective torque table) and select the required torque size according to the working pressure.
(1) Static load (Ts)
(2) Resistance load (T_{R})
(3) Inertia load (T_{A})
When static pressure force is required, such as for clamp
Ts=Fs $\times \mathrm{L}$
Ts: Required torque ($\mathrm{N} \cdot \mathrm{m}$)
Fs: Required force (N)
L : Length from center of rotation to pressure cone apex (m)

When friction force, gravity, or other external force (resistance load) is applied.
$T_{R}=K \times F_{R} \times L$
T_{R} : Required torque (N-m)
K : Slack coefficient when load does not fluctuate $\mathrm{K}=2$ when load fluctuates $\quad \mathrm{K}=5$
F_{R} : Required force (N)

- : Length from center of rotation to pressure cone apex (m)

To rotate an object

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=5 \times 1 \times \dot{\omega} \\
& \dot{\omega}=\theta / \mathrm{t}^{2}
\end{aligned}
$$

T_{A} : Required torque ($\mathrm{N} \cdot \mathrm{m}$)
I : Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ $\dot{\omega} \quad$: Angular acceleration (rad/s ${ }^{2}$)
θ : Oscillating angle (rad)
: Oscillating time (s)

Refer to the drawings for calculating the moment of inertia on page 123 and calculate the moment of inertia.

Output table (effective torque)
Unit: $\mathrm{N} \cdot \mathrm{m}$

Working pressure (MPa)									0.9	1.0
Model no.		0.2	0.3	0.4	0.5	0.6	0.7	0.8		
Single vane	RV3S1	-	0.07	0.10	0.12	0.15	0.18	-	-	-
	RV3S3	0.1	0.17	0.24	0.31	0.38	0.45	-	-	-
	RV3S10	0.35	0.56	0.75	0.98	1.2	1.39	-	-	-
	RV3S20	0.59	0.95	1.33	1.7	2.1	2.49	2.87	3.26	3.68
	RV3S30	1.1	1.8	2.5	3.19	4.1	4.8	5.8	6.5	7.2
	RV3S50	1.25	2.59	3.69	4.79	5.9	7	8.29	9.5	10.6
	RV3S150	5.5	8.5	11.5	15	18	21	24	27.3	30.5
	RV3S300	10.5	16.5	22.5	28.5	34.5	40.5	46	51.8	57.5
Double vane	RV3D1	-	0.16	0.22	0.27	0.34	0.41	-	-	-
	RV3D3	0.25	0.39	0.54	0.71	0.86	1.01	-	-	-
	RV3D10	0.76	1.17	1.62	2.11	2.54	3.03	-	-	-
	RV3D20	1.4	2.22	3.06	3.88	4.17	5.53	6.38	7.17	8.07
	RV3D30	2.7	4.4	6	7.7	9.5	11.2	12.99	14.8	16.6
	RV3D50	3.3	5.79	8.29	10.4	12.8	15.1	17.6	20.1	22.5
	RV3D150	12.5	19	27	35	41.5	48	55	62	69
	RV3D300	25.5	39	54	68	83	97	110	124	137

Selection guide

STEP 2 Oscillating time confirmation

If the oscillating time is set outside of the specified range, the actuator's operation may become unstable, or the actuator could be damaged. Always set the oscillating time within the specified oscillating time adjustment range.

Compact rotary actuator			
Model no.	Oscillating angle		
	90°	180°	270°
RV3 ${ }^{\text {s }} 1$	0.03 to 0.6	0.06 to 1.2	0.09 to 1.8
RV3 ${ }^{\text {s }}$	0.04 to 0.8	0.08 to 1.6	0.12 to 2.4
RV3s10	0.045 to 0.9	0.09 to 1.8	0.135 to 2.7
RV3 ${ }^{\text {S } 20}$	0.05 to 1.0	0.10 to 2	0.15 to 3
RV3530	0.07 to 0.7	0.14 to 1.4	0.21 to 2.1

(s)

Large rotary actuator

Model no.	Oscillating angle				
	90°	100°	180°	270°	280°
RV3 $_{5}^{\text {S }} 50$	0.08 to 0.8	0.09 to 0.9	0.16 to 1.6	0.24 to 2.4	0.25 to 2.5
RV3 $_{5}^{\mathrm{S}} 150$	0.12 to 1.2	0.13 to 1.3	0.24 to 2.4	0.36 to 3.6	0.37 to 3.7
RV3 $_{5}^{\text {S }} 300$	0.16 to 1.6	0.17 to 1.7	0.32 to 3.2	0.48 to 4.8	0.49 to 4.9

Refer to the drawings for calculating the moment of inertia on page 123 and calculate the moment of inertia.

Calculation of resistance torque	Horizontal load	Vertical load
Required	With resistance load	
Not required	Without resistance load	Without resistance load Balance load

Selection guide

Selection method for shock absorber for rotary

STEP 1 Allowable energy confirmation

Allowable energy confirmation

Obtain load inertia. If the value exceeds the rotary actuator with the vane mechanism's tolerable energy, install a shock absorber that complies with the rotary actuator.
Refer to STEP 3 on page 121 for how to select the load's kinetic energy

STEP 2 Shock absorber performance confirmation

If the load's collision energy exceeds the allowable value at the oscillating end, the shock absorber could be damaged.
Calculate the energy with the following formula and set it so it is within the allowable value.
If the energy is too large, consider using a separate shock absorber with large absorption performance.

```
E=E
E
\omega0}\fallingdotseq1.2\times
\omega=0/t
E}=1/2\timesT\times\mp@subsup{0}{}{\prime
Em=E\timesn
    E : Colliding energy (J)
    E1 : Kinetic energy (J)
    E2 : Thrust energy (J)
    \omega0 : Colliding angular speed (rad/s)
    \omega : Average angular speed (rad/s)
    | : Moment of inertia (kg\cdotm}\mp@subsup{}{}{2}
    0 : Oscillating angle (rad)
    0
    t : Oscillating time (s)
    T : Torque of rotary actuator (N}\cdot\textrm{m}
    Em : Energy per minute (J/min)
    n : Cycle rate (time/min)
```

RV3* ${ }_{\text {series }}$
Calculation of moment of inertia
Calculation of moment of inertia

	Sketch	Requirements	Moment of inertial $\mathrm{kg} / \mathrm{m}^{2}$	$\begin{array}{c\|c} \begin{array}{c} \text { Radius of } \\ \text { gyration } \end{array} & \mathrm{K}_{1}^{2} \end{array}$	Remarks
		- Diameter $d(m)$ - Weight $M(k g)$	$\mathrm{I}=\frac{\mathrm{Md}^{2}}{8}$	$\frac{\mathrm{d}^{2}}{8}$	- No installation direction - When using with sliding, consult with CKD
		- Diameter $d_{1}(m)$ $d_{2}(m)$ - Weight d_{1} section $M_{1}(\mathrm{~kg})$ d_{2} section $M_{2}(\mathrm{~kg})$	$\mathrm{I}=\frac{1}{8}\left(\mathrm{M}_{1} \mathrm{~d}_{1}^{2}+\mathrm{M}_{2} \mathrm{~d}_{2}^{2}\right)$	$\frac{d_{1}^{2}+d_{2}^{2}}{8}$	- Ignore if d_{2} section is extremely small comparing to d_{1} section
		- Bar length $\ell(\mathrm{m})$ - Weight $M(\mathrm{~kg})$	$I=\frac{M \ell^{2}}{3}$	$\frac{\ell^{2}}{3}$	- The installation direction is horizontal - If an installation direction is vertical, oscillating time varies
		- Bar length $\ell(\mathrm{m})$ - Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{M} \ell^{2}}{12}$	$\frac{\ell^{2}}{12}$	- No installation direction
		- Length of side $a(m)$ $b(m)$ - Weight $M(k g)$	$I=\frac{M}{12}\left(a^{2}+b^{2}\right)$	$\frac{a^{2}+b^{2}}{12}$	- No installation direction - When using with sliding, consult with CKD
		- Shape of concentrated load - Length to center of gravity of concentrated load $\quad \ell_{1}$ - Arm length $\quad \ell_{2}(m)$ - Concentrated load weight M. (kg) - Arm weight $\mathrm{M}_{2}(\mathrm{~kg})$	$\mathrm{I}=\mathrm{M}_{1}\left(l_{1}^{2}+K_{1}^{2}\right)+\frac{M_{2} \ell_{2}^{2}}{3}$	Calculate $\mathrm{K}_{1}{ }^{2}$ according to shape of concentrated load	- The installation direction is horizontal - If M_{2} is extremely small comparing to M_{1}, may be calculated as $\mathrm{M}_{2}=0$

When using with gear, how to convert load JL to rotary actuator shaft rotation

$\begin{array}{\|l\|} \hline \text { ॠ̄ } \\ \text { © } \end{array}$		Gear Rotary side (the tooth number) a Load side (the tooth number) Load inertia Moment N.m	Load moment of inertia of rotary actuator shaft rotation $I_{H}=\left(\frac{a}{b}\right)^{2} / \operatorname{ll}$	- When shape of gear is increasing, gear moment of inertia should be considered.

Example of selection guide

Selection example 1 Clamp

<Operation conditions>
Pressure $\quad 0.5 \mathrm{MPa}$

Oscillating angle 90°
Oscillating time 0.3s
Clamp lever weight $\quad 0.1 \mathrm{~kg}$
Clamping force 20N
Clamp position 50 mm

STEP 1 Size (torque) selection

Calculate the torque required for the static torque.

> Fs = clamping force: 20 N
> $\mathrm{~L}=$ clamp position: 0.050 m

$$
\mathrm{Ts}=20 \times 0.05=1.0 \mathrm{~N} \cdot \mathrm{~m}
$$

RV3S20-90 temporary selected from required torque

STEP 2 Oscillating time confirmation

Make sure that the oscillating time in the working conditions is within the specified value.
The operation time is 0.3 seconds for 90°
and is OK since the RV3S20-90 oscillating
time adjustment range is 0.05 to 1.0 .
Proceed to the next step.

STEP 3 Allowable energy confirmation

Calculate the dynamic energy, and confirm that it is within the allowable energy value.
Calculate the moment of inertia I for the clamp lever.
<Bar (rotation center is at the end)>
I $=\mathrm{M} \times \mathrm{L}^{2} / 3=0.1 \times 0.05^{2} / 3$
$=0.0000833 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Calculate the average angle speed ω.
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.3 \mathrm{~s}$
$\omega=\theta / \mathrm{t}=(\pi / 2) / 0.3=5.236(\mathrm{rad} / \mathrm{s})$
Thus, the dynamic energy (E),

$$
\begin{aligned}
E & =1 / 2 \times 8.33 \times 10^{-5} \\
& \times 5.236^{2} \times 10^{3} \\
= & 1.14 \quad(\mathrm{~mJ})
\end{aligned}
$$

The allowable energy is satisfied, so the RV3S20-90 can be selected.

Selection example2 When there is a disc-shaped load at end of bar

<Operation conditions>	
Pressure	0.5 MPa
Oscillating angle	90°
Oscillating time	0.2 s
Bar length	60 mm
Bar weight	0.1 kg
Distance to th plate	55 mm
Diameter of dial plate	12 mm
Plate weight	0.12 kg

STEP 1 Size (torque) selection

Since this is an inertial load, calculate the moment of inertia.

$$
\begin{aligned}
\mathrm{I} & =\mathrm{M}_{1}\left(\mathrm{I}_{1}^{2}+\mathrm{K}_{1}^{2}\right)+\mathrm{M}_{2} \mathrm{I}_{2}{ }^{2} / 3 \\
& =0.12 \times\left(0.055^{2}+\left(0.012^{2} / 8\right)\right) \\
& +0.1 \times 0.06^{2} / 3 \\
= & 4.85 \times 10^{-4} \quad
\end{aligned}
$$

Next, calculate the angle speed $\dot{\omega}$.
On conditions
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.2 \mathrm{~s}$
$\dot{\omega}=\theta / \mathrm{t}^{2}=(\pi / 2) / 0.2^{2}$
$=39.27\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
Thus, the inertial torque $\left(T_{A}\right)$ is,
$\mathrm{T}_{\mathrm{A}}=5 \times 4.85 \times 10^{-4} \times 39.27$
$=0.095 \quad(\mathrm{~N} \cdot \mathrm{~m})$
RV3S3-90 temporary selected from inertial torque

STEP 2 Oscillating time confirmation

Make sure that the oscillating time in the working conditions is within the specified value.
The operation time is 0.2 seconds for 90° and is OK since the RV3S3-90 oscillating time adjustment range is 0.04 to 0.8 .
Proceed to the next step.

STEP 3 Allowable energy confirmation

Calculate the dynamic energy, and confirm that it is within the allowable energy value.

On conditions
 $\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
 $\mathrm{t}=0.2 \mathrm{~s}$
 $\omega=\theta / \mathrm{t}=(\pi / 2) / 0.2$
 $=7.854 \quad(\mathrm{rad} / \mathrm{s})$

Thus, the dynamic energy (E),

$$
\begin{aligned}
& E=1 / 2 \times 4.85 \times 10^{-4} \\
& \times 7.854^{2} \times 10^{3} \\
&=14.96 \quad(\mathrm{~mJ})
\end{aligned}
$$

[^5]Example of selection guide

Selection examole 3 When rotating shaft is horizontal plate-shaped load

<Operation conditions>

Pressure	0.5 MPa
Oscillating angle	90°
Oscillating time	0.12 s
Plate length	100 mm
Plate weight	1.5 kg
Distance to the center of gravity	50 mm
Cycle rate	5 times $/ \mathrm{min}$.

STEP 1 Size (torque) selection

This is a gravitational resistance load and inertial load, so calculate the resistance torque (TR) and inertial torque (TA).
<Resistance torque>
The resistance torque varies according to the rotation
so calculate the maximum value.
$F_{R}=$ gravity $=1.5 \times$
$\mathrm{L}=$ distance to the gravity: 0.050 mm
$\mathrm{T}_{\mathrm{R}}=5 \times 14.7 \times 0.05=3.675 \mathrm{~N} \cdot \mathrm{~m} \cdots$ (1)
(Inertial torque)
Bar (center of rotation is an end.)
I $=1.5 \times 0.1^{2} / 3=0.005\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
On conditions
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.12 \mathrm{~s}$

- $\omega=\theta / t^{2}=(\pi / 2) / 0.12^{2}$
$=109.1 \quad(\mathrm{rad} / \mathrm{s} 2)$
Thus, the inertial torque (TA) is,
$\mathrm{T}_{\mathrm{A}}=5 \times 0.005 \times 109.1$
=2.727 (N-m) • • • • • • • (2)
When the resistance torque and inertial torque are added,
$\mathrm{T}=\mathrm{T}_{\mathrm{R}}+\mathrm{T}_{\mathrm{A}}=3.675+2.727=6.402 \quad(\mathrm{~N} \cdot \mathrm{~m})$
RV3S150-90 temporally selected from required torque

STEP 2 Oscillating time confirmation

Make sure that the oscillating time in the working conditions is within the specified value.
The operation time is 0.12 seconds for 90°
and is OK since the RV3S150-90 oscillating time
adjustment range is 0.12 to 1.2.
Proceed to the next step.

STEP 3 Allowable energy confirmation

Calculate the dynamic energy, and confirm that it is within the allowable energy value.
On conditions
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.12 \mathrm{~s}$
$\omega=\theta / \mathrm{t}=(\pi / 2) / 0.12$
$=13.09$ (rad/s)
Thus, the dynamic energy (E),
$\mathrm{E}=1 / 2 \times 0.005$
$\times 13.09^{2} \times 10^{3}$
$=428$ (mJ)
The allowable energy is exceeded, so consider a shock absorber

Shock absorber review

Shock absorber STEP 1 Allowable energy confirmation

The allowable energy is exceeded, so confirm the shock absorber in the next step.

Shock absorber STEP 2 Confirmation of shock absorber performance

Colliding angular speed

$\omega 0=1.2 \times \omega=1.2 \times 13.09=15.7 \quad(\mathrm{rad} / \mathrm{S})$
Kinetic energy
$\mathrm{E} 1=1 / 2 \times 0.005 \times 15.7^{2}=0.617(\mathrm{~J})$
Torque at 0.5 MPa of RV3S150: 14.7 ($\mathrm{N} \cdot \mathrm{m}$)
Absorbing angle: 0.2 of shock absorber (rad)
Thrust energy
$\mathrm{E} 2=1 / 2 \times 14.7 \times 0.2=1.47(\mathrm{~J})$
Thus, the collision energy (E) is
$\mathrm{E}=\mathrm{E} 1+\mathrm{E} 2=0.617+1.47 \fallingdotseq 2.09(\mathrm{~J})$
Energy per minuit (Em)
$\mathrm{Em}=2.09 \times 5=10.4(\mathrm{~J})$
All of the shock absorber specified values are satisfied, so the RV3S150 with shock absorber can be selected.

| RRC |
| :--- | :--- |
| GRC |
| RV3* |
| NHS |
| HR |
| LN |
| FH100 |
| HAP |
| BSA2 |
| BHA |
| BHG |
| LHA |
| LHAG |
| HKP |
| HLA/ |
| HLB |
| HLAG/ |
| HLBG |
| HEP |
| HCP |
| FKing |
| CKH2 |
| CKLB2 |
| HCK |
| SCKFCK |
| CKL |
| HMFB |
| CKL2 |
| CKFP |
| CKS |
| HLC |
| HGP |
| FH500 |
| HBL |
| HDL |
| HMD |
| HJL |
| BHE |
| CKG |
| CKF |

Applications

Boring device (pitch feeding by one way clutch)

Table reciprocating device

Stamp device

Applications

[^0]: Example for 90°

[^1]: Note 1: Calculate allowable energy with allowable inertia energy of shaft of rotary actuator as following.
 Allowable energy $\geqq 1 / 21 \omega^{2} \times 10^{3}$ (refer to Page 121 for detail.)
 Note 2: The maximum working frequency is at supply pressure 0.5 MPa <in no load state>.
 Note 3: 5 to $60^{\circ} \mathrm{C}$ when switch is provided.
 Note 4: A key is enclosed with the rotary actuator with keyway.
 Note 5: Consult with CKD for products other than standard specifications.

[^2]: Refer to page 116 for the repair parts list.

[^3]: Note 1: Calculate allowable energy with allowable inertia energy of shaft of rotary actuator as following.
 Allowable energy $\geqq 1 / 21 \omega^{2} \times 10^{3}$ (refer to Page 121 for detail.)
 Note 2: The maximum working frequency is at supply pressure 0.5 MPa <in no load state>.
 Note 3: 5 to $60^{\circ} \mathrm{C}$ when switch is provided.
 Note 4: A key is enclosed with the rotary actuator with keyway.
 Note 5: Consult with CKD for products other than standard specifications.

[^4]: * indicates rotary actuator size. $(10,20,30)$

[^5]: The allowable energy is exceeded, so select the RV3S50 and install an external shock absorber.

