Selection guide of rotary actuator

Step 1 Oscillating time check

Use oscillating time within specified range of the below table.

<table>
<thead>
<tr>
<th>Oscillating angle (*)</th>
<th>90</th>
<th>180</th>
<th>270</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRC-8</td>
<td>0.015 to 0.151</td>
<td>0.030 to 0.302</td>
<td>0.045 to 0.452</td>
</tr>
<tr>
<td>RRC-32</td>
<td>0.038 to 0.377</td>
<td>0.075 to 0.754</td>
<td>0.113 to 1.131</td>
</tr>
<tr>
<td>RRC-63</td>
<td>0.073 to 0.440</td>
<td>0.147 to 0.880</td>
<td>0.220 to 1.320</td>
</tr>
</tbody>
</table>

* Oscillating time on table is time to achieve the end of oscillating after starting movement.

Step 2 Size selection

- **Static load**
 - (1) Working pressure is determined. \(P \) (MPa)
 - (2) A required force is determined. \(F \) (N)
 - (3) Length of an arm from a rotary actuator is determined. \(\ell \) (m)

 \[T = F \ell \quad \text{(N·m)} \]

- **Resistance load**
 - When force (resistance load) caused by fictional force, gravity or other external force is applied.
 - (1) Working pressure is determined. \(P \) (MPa)
 - (2) A required force is determined. \(F_r \) (N)
 - (3) Length of an arm from a rotary actuator is determined. \(\ell \) (m)

 \[T_r = K \times F_r \times \ell \quad \text{(N·m)} \]

 \(K \): slack coefficient
 - If load fluctuation free \(K = 2 \)
 - If load fluctuates \(K = 5 \)

 (When resistance torque caused by gravity functions)

 if load fluctuates, when \(K < 5 \),

 change of angular speed increases.

- **Inertia load**
 - To rotate body.
 - (1) Oscillating angle, oscillating time and working pressure are determined.
 - Oscillating angle \(\theta \) (rad)
 - Oscillating time \(t \) (s)
 - Working pressure \(P \) (MPa)
 - \(90^\circ = 1.5708 \) (rad)
 - \(180^\circ = 3.1416 \) (rad)
 - \(270^\circ = 4.7124 \) (rad)
 - (2) Calculate load moment of inertia according to load shape and weight. Refer to moment of inertia table for the calculation formula.
 \(I \) (kg/m²)

 \(\alpha \) \(= \frac{\theta t^2}{18} \quad \text{(rad/s)} \)
 - \(\theta \): Oscillating angle (rad)
 - \(t \): Oscillating time (s)

 \[T_a = 5 \times I \times \alpha \quad \text{(N·m)} \]

- **Required torque**
 \(T = T_r + T_a \)

Step 3 Check of allowable energy

When using an inertial load, keep the load energy to lower than the rotary actuator’s allowable energy.

- (1) Calculate angular speed \(\omega = \frac{\theta t}{2\pi} \quad \text{(rad/s)} \)
 - \(\theta \): Oscillating angle (rad)
 - \(t \): Oscillating time (s)

- (2) Calculation of load inertia energy
 \(E = \frac{1}{2} I \omega^2 \quad \text{(J)} \)
 - \(I \): Load moment of inertia (kg/m²)

Check if load inertia energy \(E \) to be allowable energy of rotary actuator or less.

When exceeding allowable energy, external shock absorber, etc. is required.
2. Figure for moment of inertia calculation

When rotary shaft goes through workpiece

<table>
<thead>
<tr>
<th>Sketch</th>
<th>Requirements</th>
<th>Moment of inertia I kg/m²</th>
<th>Radius of gyration K</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dial plate</td>
<td>Diameter d (m)</td>
<td>I = Md²/8</td>
<td>d²/8</td>
<td>No installation direction when using with sliding, please consult with CKD</td>
</tr>
<tr>
<td>Dial plate with a step</td>
<td>Diameter d₁ (m), d₂ (m)</td>
<td>I = (M₁d₁² + M₂d₂²)/8</td>
<td>d₁² + d₂²/8</td>
<td>Ignore, when d₁ section is extremely small comparing to d₂ section</td>
</tr>
<tr>
<td>Bar</td>
<td>Bar length R (m)</td>
<td>I = MR²/3</td>
<td>R²/3</td>
<td>The installation direction is horizontal if vertical installation attitude, oscillating time varies</td>
</tr>
<tr>
<td>Thin rod</td>
<td>Bar length R (m)</td>
<td>I = MR²/12</td>
<td>R²/12</td>
<td>No installation direction</td>
</tr>
<tr>
<td>Thin rod (with side eccentric)</td>
<td>Plate length a₁, a₂, b (m)</td>
<td>I = (M₁a₁² + b₁²) + (M₂a₂² + b₂²)/12</td>
<td>(a₁² + b₁²) + (a₂² + b₂²)/12</td>
<td>The installation direction is horizontal if vertical installation attitude, oscillating time varies</td>
</tr>
<tr>
<td>Rectangular parallelepiped</td>
<td>Length of side a (m), b (m)</td>
<td>I = M₁(a² + b²)/12</td>
<td>a² + b²/12</td>
<td>No installation direction when using with sliding, please consult with CKD</td>
</tr>
</tbody>
</table>

Concentrated load

- Shape of concentrated load
- Length to center of gravity of concentrated load R (m)
- Arm length R (m)
- Concentrated load weight M₁ (kg)
- Arm weight M₂ (kg)

\[
I = M₁(R₁² + k₁²) + \frac{M₂R₁²}{3}
\]

Calculate k² according to shape of concentrated load

- The installation direction is horizontal
- When M₂ is extremely small comparing to M₁, may be calculated as M₂ = 0

How to convert load J₀ to rotary actuator shaft rotation when using with gear

<table>
<thead>
<tr>
<th>Gear</th>
<th>Moment of inertia of load rotary shaft rotation I₀ = (a/b)² l₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear</td>
<td>Rotary side (the tooth number) a</td>
</tr>
<tr>
<td>Gear</td>
<td>Load inertia Moment N-m</td>
</tr>
</tbody>
</table>

- When shape of gear is increasing, gear moment of inertia should be considered.