Selection guide of rotary actuator

Step1 Oscillating time check

Use oscillating time withing specified range of the below table.
Unit: S

Oscillating angle (${ }^{\circ}$)	90	180	270
Model no.	0.015 to 0.151	0.030 to 0.302	0.045 to 0.452
RRC-8	0.038 to 0.377	0.075 to 0.754	0.113 to 1.131
RRC-32	0.073 to 0.440	0.147 to 0.880	0.220 to 1.320
RRC-63			

* Oscillating time on table is time to achieve the end of oscillating after starting movement.

Step2 Size selection

If clamp, or simple static forces, etc., are necessary.

To move load

Resistance load

When force (resistance load) caused by fictional force, gravity or other external force is applied.
(1) Working pressure is determined. $\mathrm{P}(\mathrm{MPa})$
(2) A required force is determined.
(3) Length of an arm from a rotary
(m)

Inertia load

To rotate body.
(1) Oscillating angle oscillating time and working pressure are determined.

Oscillating angle $\quad \theta$ (rad)
Oscillating time $\quad t(s)$
Working pressure $\quad \mathrm{P}(\mathrm{MPa})$

$$
90^{\circ}=1.5708(\mathrm{rad})
$$

$$
180^{\circ}=3.1416(\mathrm{rad})
$$

$$
270^{\circ}=4.7124(\mathrm{rad})
$$

(2) Calculate load moment of inertia according to load shape and weight. Refer to moment of inertia table for the calculation formula. $\mathrm{l}\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
(3) Angular acceleration is calculated.

$$
\begin{aligned}
& \alpha=\frac{2 \theta}{\mathrm{t}^{2}}\left(\mathrm{rad} / \mathrm{s}^{2}\right) \\
& \theta: \text { Oscillating angle (rad) } \\
& \mathrm{t}: \text { Oscillating time (s) }
\end{aligned}
$$

Fr (N)

Calculation of resistance torque $T_{R}=\mathrm{K} \times \mathrm{FR}_{\mathrm{R}} \times \ell(\mathrm{N} \cdot \mathrm{m})$ $\mathrm{K}:$ If load fluck coefficient If load fluctuaten free $\mathrm{K}=2$ (When resistance torque caused by gravity functions) if load fluctuates, when $\mathrm{K}<5$, change of angular speed increases.	Determine size of rotary actuator according to output torque graph.

Calculation of acceleration torque
$T_{A}=5 \times I \times \alpha(N \cdot m)$
T_{A} is the required torque to accelete inertia load till set speed.

Determine size of rotary actuator according to graph.

Step3 Check of allowable energy

When using an inertial load, keep the load energy to lower than the rotary actuator's allowable energy.
(1) Calculate angular speed $\omega=\frac{2 \theta}{\mathrm{t}}(\mathrm{rad} / \mathrm{s})$

$$
\theta: \text { Oscillating angle (rad) } \quad \mathrm{t} \text { : Oscillating time (s) }
$$

(2) Calculation of load inertia energy

$$
\mathrm{E}=1 / 2 \mathrm{l} \omega^{2}(\mathrm{~J})
$$

I: Load moment of inertia $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$
Check if load inertia energy E to be allowable energy of rotary actuator or less.
When exceeding allowable energy, external shock absorber, etc. is required.

Selection guide

