TRANSMISSION TECHNOLOGY

CENTRIFUGAL CLUTCHES
CENTRIFUGAL BRAKES

ELECTROMAGNETIC CLUTCHES
ELECTROMAGNETIC BRAKES

STANDARD VERSIONS
CUSTOMIZED SOLUTIONS
1938
Robert Scheuffele opens a mechanical workshop.

1945
Partnership formed by Robert Scheuffele and Georg Fuhrmann.

1950 ...
Registration of the name SUCO (Scheuffele und Co) as a trademark. Development and production of centrifugal clutches and brakes. Market leader in Germany and abroad. Company moves into a new production and administration building.

1960 ...
Electromagnetic clutches and brakes introduced into the production program. Development and production of pressure and vacuum switches started.

1970 ...
Establishment of a comprehensive dealer and sales network throughout Europe. SUCO mechanical pressure and vacuum switches become leaders in their market.

TRADITION AND INNOVATION

From a mechanical workshop to an international industrial manufacturer

Design and development of new products using the latest CAD tools.

To simulate realistic environmental conditions and loads, our products are subjected to extensive trials and tests.

Assembly and testing of pressure switches on partially or fully automated plant.

Computer-aided test stand for torque and engagement speed.
A view of our clutch assembly area. Experienced employees with long staff membership and professional competence guarantee high quality.

Thorough training at SUCO is an important guarantee for the continuing development of the company in the future.

Latest measurement and inspection equipment for quality assurance in receiving and production.

From here our products are dispatched to customers all over the world.

Capacity and schedule planning of production orders to make optimum use of the available human, machinery and material resources.

Ultra-modern production plant with integrated, fully-automatic component handling for high efficiency.

1985
SUCO Inc. formed in the USA to serve the American market.

A new building extends the production and administration facilities.

1997 ...
Dealer structure built up in Asia. Company certified to ISO 9001.

1999
Founding of a subsidiary company, SUCO VSE, in France.

2001

2004
Inauguration of a new building incorporating a modern production hall and 600 m² of administration space.

2005
Company name changed to SUCO Robert Scheuffele GmbH & Co. KG.
An Overview of Transmission Technology

Centrifugal clutches and brakes From page 6

- *Load-free starting, speed-dependent load take-up, clutches slip when overloaded*
- *Smaller (less expensive) motors*
- *Nearly slip-free torque transmission at operating speed*

General technical explanations Page 6

F-Type
Self-increasing clutch Page 8
- *Compact design, self-increasing torque*
- *Wear parts easy to replace*
- *Performance factor for torque transmission: ca. 2.5*

S-Type
Pin-guided clutch with three flyweights Page 10
- *Robust construction*
- *Bonded linings*
- *Very smooth running*
- *Performance factor for torque transmission: ca. 1.5*

W-Type
Pin-guided clutch with two flyweights Page 12
- *Wearing parts easy to replace*
- *Very smooth running*
- *Performance factor for torque transmission: ca. 1.0*

P-Type
Asymmetric pivot clutch Page 14
- *Narrow design*
- *Torque capacity depends on direction of rotation*
- *Performance factor for torque: ca. 1.75 or 1.25 depending on direction*
- *Only available in large sizes*
- *Extremely smooth running*

Different solutions, driven-side Page 16

Centrifugal brakes Page 18
- *Construction and mode of operation, temperature characteristics*

Key to model codes Page 20
Questionnaire for customer’s requirements Page 21
Calculating the torque:

\[M_d \cdot n = P \]

\[P = \frac{M_d \cdot n}{9550} \text{ [kW]} \]

\[M_d = \frac{9550 \cdot P}{n} \text{ [kW]} \]

\[P = \frac{M_d \cdot n}{7162} \text{ [hp]} \]

\[M_d = 7162 \cdot \frac{P}{n} \text{ [hp]} \]

[1 Nm = 10 kpcm]

[1 kW = 1.36 hp]

[1 hp = 0.7355 kW]

The most important factor for selection of a centrifugal clutch is the amount of power to be transmitted. Knowing the power available from the drive motor and the operating speed, the torque to be transmitted can be calculated and the size of the clutch determined.

For the vast majority of drives, there is a wide range of clutch types and designs. Our sizes 01 to 13 cover – depending on engagement and operating speeds – a torque range up to ca. 2000 Nm.

To be sure that clutches operate correctly, grease, oil and moisture must be kept away from their friction surfaces.
Performance factor for torque transmission:

The performance factor for torque transmission is a measure of the capacity of a clutch to provide sufficient friction to transmit the power applied to it when the flyweights are in contact with the drum.

Whereas a W-Type clutch has a performance factor of 1.0, an F-Type clutch of the same size with self-increasing effect is capable of transmitting a torque approximately 2.5 times greater at the same speed and with the same flyweight mass.

The asymmetric pivot clutch achieves a power factor of ca. 1.75 or ca. 1.25 depending on the direction of rotation.

Engagement speed:

The engagement speed of a centrifugal clutch indicates the speed at which centrifugal force acting on the mass of the flyweights overcomes the force exerted by the tension springs that restrain them. The flyweights are forced outwards and the friction surfaces start to rub on the inner surface of the clutch drum. The full torque is only transmitted at a higher speed at which the friction surfaces of the flyweights are fully in contact with the clutch drum.

Wear of the friction linings can be minimised by passing quickly through the engagement speed band. The engagement speed is influenced by the strength of the springs that restrain the flyweights – the stronger the spring the longer the flyweights are held back. The engagement speed is chosen to suit the operating speed of the drive motor and the power that is to be transmitted. Because the power a centrifugal clutch can transmit rises as the speed of rotation increases, there will be a minimum operating speed for a drive system. This will depend on the application, but is frequently in the order of 600 rpm.

The engagement speed and the springs required are determined individually using the knowledge and experience we have built up at SUCO. The engagement speed \(n_E\) is selected so that the transmissible torque at operating speed \(n_B\) is higher than theoretically necessary. This safety factor protects the clutch from slipping if the speed drops for a short period.

Example of engagement behaviour

- **Clutch**
- **Motor**

\[n_E = \text{engagement speed}, \quad n_B = \text{operating speed}\]
Construction and mode of operation

The flyweights 2 are seated on the profiled hub 1 and are held against it by tension springs 3, which are hooked into the linings 4. Discs locate the flyweights axially. Each lining has a crimping on its inner surface to locate it on the flyweight. This prevents the linings from moving sideways.

As the profiled hub rotates, the centrifugal force acting on the flyweights overcomes the spring force. When the speed is high enough, the linings contact the clutch drum 5, and friction between the linings and the drum allows torque to be transmitted between the two.

Advantages

The compact design and self-increasing effect allow this clutch to transmit remarkably high torques while needing very little space, resulting in a performance factor of ca. 2.5.

Because the tension springs are easily accessible and the linings removable, the parts subject to wear are easy to replace. Because the linings are not secured to the flyweights, some noise is possible in service, but normally not sufficient to cause a nuisance.

Self-increasing effect: the profiled hub has a special form which causes a wedging effect between the profile and the flyweights when torque is applied to the clutch. This results in an additional force on the linings and allows a higher torque to be transmitted.
Performance data and dimensions:

<table>
<thead>
<tr>
<th>Size</th>
<th>D [mm]</th>
<th>B [mm]</th>
<th>d max [mm]</th>
<th>Standard bore diameter [mm]</th>
<th>Md at nE 750 and nB 1500 [Nm]</th>
<th>Recommended motor power [kW]</th>
<th>Md at nE 1250 and nB 2500 [Nm]</th>
<th>Recommended motor power [kW]</th>
<th>Md at nE 1500 and nB 3000 [Nm]</th>
<th>Recommended motor power [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>50</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>1.3</td>
<td>0.17</td>
<td>2</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>60</td>
<td>15</td>
<td>18</td>
<td>15 (5/8)</td>
<td>4</td>
<td>0.5</td>
<td>5</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>70</td>
<td>15</td>
<td>22</td>
<td>15; 20 (7/16)</td>
<td>7</td>
<td>0.9</td>
<td>10</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>80</td>
<td>15</td>
<td>28</td>
<td>14 - 25 (7/16; 9/16)</td>
<td>4</td>
<td>0.3</td>
<td>11</td>
<td>1.4</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td>05</td>
<td>90</td>
<td>20</td>
<td>35</td>
<td>18; 20; 25 (7/16; 1)</td>
<td>10</td>
<td>0.8</td>
<td>26</td>
<td>3.4</td>
<td>40</td>
<td>6.3</td>
</tr>
<tr>
<td>06</td>
<td>100</td>
<td>20</td>
<td>35</td>
<td>20; 24; 28 (7/16; 1)</td>
<td>16</td>
<td>1.3</td>
<td>42</td>
<td>5.5</td>
<td>60</td>
<td>9.4</td>
</tr>
<tr>
<td>07</td>
<td>110</td>
<td>20</td>
<td>40</td>
<td>28; 35; 40 (1)</td>
<td>25</td>
<td>2.0</td>
<td>70</td>
<td>9.0</td>
<td>100</td>
<td>15.7</td>
</tr>
<tr>
<td>08</td>
<td>125</td>
<td>20</td>
<td>50</td>
<td>25; 38; 49 (7/16; 1)</td>
<td>40</td>
<td>3.2</td>
<td>120</td>
<td>15.7</td>
<td>180</td>
<td>28.3</td>
</tr>
<tr>
<td>09</td>
<td>138</td>
<td>25</td>
<td>55</td>
<td>30; 38; 48 (1)</td>
<td>90</td>
<td>7.0</td>
<td>240</td>
<td>31.0</td>
<td>320</td>
<td>50.0</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>25</td>
<td>60</td>
<td>38; 48; 49</td>
<td>125</td>
<td>10.0</td>
<td>340</td>
<td>44.5</td>
<td>470</td>
<td>74.0</td>
</tr>
<tr>
<td>11</td>
<td>165</td>
<td>30</td>
<td>65</td>
<td>42; 50; 55 (1 7/16)</td>
<td>220</td>
<td>17.2</td>
<td>620</td>
<td>81.0</td>
<td>870</td>
<td>136.0</td>
</tr>
<tr>
<td>12</td>
<td>180</td>
<td>40</td>
<td>75</td>
<td>50; 60 (2 3/8)</td>
<td>460</td>
<td>36.0</td>
<td>1200</td>
<td>157.0</td>
<td>1700</td>
<td>267.0</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>30</td>
<td>75</td>
<td>35; 55; 65 (2 3/8)</td>
<td>520</td>
<td>41.0</td>
<td>1300</td>
<td>170.0</td>
<td>1850</td>
<td>290.0</td>
</tr>
</tbody>
</table>

1) The transmitted power increases as the width B is increased.
2) Tapered bores and special dimensions can be manufactured on request.
3) Motor power is calculated using a safety factor of 2.

Final selection of the clutch should be carried out by SUCO!

Exploded view of F-Type

1. Hub
2. Flyweights
3. Tension spring
4. Lining
5. Cover disc

Legend
- **d max.** = max. bore dia.
- **Md** = torque
- **nE** = engagement speed
- **nB** = operating speed
- **Ø D** = inside dia. of drum
- **Ø d** = flyweight width
Construction and mode of operation

The cylindrical hub 1 carries three flyweights 2 which are located by and can slide on cylindrical pins 3. Inside the flyweights, there are tension springs 4 which restrain neighbouring flyweights until centrifugal force overcomes the spring force. Then the flyweights lift from their seats and the linings 5 on the flyweights contact the inside diameter of the clutch drum 6. Friction between the linings and the clutch drum allows torque to be transmitted.

Advantages

In contrast to F-Type clutches, the linings of pin-guided clutches are permanently bonded to the flyweights instead of being mounted on loose carriers. The guide pins of W-Type clutches provide accurate guidance for the flyweights, which ensures quiet operation of the clutch.

For this type of clutch, the performance factor for torque transmission is ca. 1.5.
Performance data and dimensions:

<table>
<thead>
<tr>
<th>Size</th>
<th>D [mm]</th>
<th>B [mm]</th>
<th>d max. [mm]</th>
<th>Standard bore diameter d [mm] (inch)</th>
<th>Md at nE 1250 and nB 2500 [Nm]</th>
<th>Recommended motor power 3) [kW]</th>
<th>Md at nE 1500 and nB 3000 [Nm]</th>
<th>Recommended motor power 3) [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>80</td>
<td>25</td>
<td>24</td>
<td>15 (1/4 ; 5/6)</td>
<td>4.3</td>
<td>0.3</td>
<td>12</td>
<td>1.6</td>
</tr>
<tr>
<td>05</td>
<td>90</td>
<td>25</td>
<td>30</td>
<td>14; 30 (5/6)</td>
<td>7.5</td>
<td>0.6</td>
<td>21</td>
<td>2.8</td>
</tr>
<tr>
<td>06</td>
<td>100</td>
<td>25</td>
<td>24</td>
<td>20; 24; 28 (5/6; 7/6)</td>
<td>11</td>
<td>0.8</td>
<td>30</td>
<td>4.0</td>
</tr>
<tr>
<td>07</td>
<td>110</td>
<td>25</td>
<td>30</td>
<td>28; 30 (1)</td>
<td>15</td>
<td>1.2</td>
<td>45</td>
<td>6.0</td>
</tr>
<tr>
<td>08</td>
<td>125</td>
<td>25</td>
<td>40</td>
<td>20; 30 (1 1/2)</td>
<td>30</td>
<td>2.4</td>
<td>85</td>
<td>11.0</td>
</tr>
<tr>
<td>09</td>
<td>138</td>
<td>25</td>
<td>30</td>
<td>17; 30 (1; 1 1/4)</td>
<td>40</td>
<td>3.0</td>
<td>112</td>
<td>15.0</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>35</td>
<td>40</td>
<td>38 (1 1/4)</td>
<td>78</td>
<td>6.0</td>
<td>216</td>
<td>28.0</td>
</tr>
</tbody>
</table>

1) The transmitted power increases as the width B is increased.
2) Tapered bores and special dimensions can be manufactured on request.
3) Motor power is calculated using a safety factor of 2.
 Final selection of the clutch should be carried out by SUCO!

Exploded view of S-Type

- 1 Hub
- 2 Flyweights
- 3 Cylindrical pin
- 4 Tension spring
- 5 Lining
- 6 Clutch drum

d max. = max. bore dia.
Md = torque
nE = engagement speed
nB = operating speed

d = bore dia.
D = inside dia. of drum
B = flyweight width
W-Type

Pin-guided clutch with two flyweights

Construction and mode of operation

The cylindrical hub (1) carries two flyweights (2), which are located by and can slide on cylindrical pins (3). The tension springs (4) are attached outside the flyweights to lining carriers (5). The tension springs restrain the flyweights until centrifugal force overcomes the spring force. Then the flyweights lift from their seats and the linings contact the inside diameter of the clutch drum (6). Friction between the linings and the clutch drum allows torque to be transmitted.

Advantages:

The W-Type combines the advantages of F-Type and S-Type clutches. Because the tension springs are easily accessible and the linings removable, the parts subject to wear are easy to replace.

As with the S-Type, the guide pins provide accurate guidance for the flyweights, which ensures quiet operation of the clutch. For this type of clutch, the performance factor for torque transmission is 1.0.
Performance data and dimensions:

<table>
<thead>
<tr>
<th>Size</th>
<th>D [mm]</th>
<th>B [mm] 1)</th>
<th>d max. [mm]</th>
<th>Standard bore diameter d [mm] (inch) 2)</th>
<th>Md at nE 750 and nB 1500 [Nm]</th>
<th>Recommended motor power 3) [kW]</th>
<th>Md at nE 1250 and nB 2500 [Nm]</th>
<th>Recommended motor power 3) [kW]</th>
<th>Md at nE 1500 and nB 3000 [Nm]</th>
<th>Recommended motor power 3) [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>80</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>1.7</td>
<td>0.14</td>
<td>4.6</td>
<td>0.6</td>
<td>6.6</td>
<td>1.0</td>
</tr>
<tr>
<td>05</td>
<td>90</td>
<td>20</td>
<td>25</td>
<td>14 (5/8)</td>
<td>3.7</td>
<td>0.3</td>
<td>10.3</td>
<td>1.4</td>
<td>14.8</td>
<td>2.3</td>
</tr>
<tr>
<td>06</td>
<td>100</td>
<td>20</td>
<td>30</td>
<td>30</td>
<td>5.7</td>
<td>0.45</td>
<td>16.0</td>
<td>2.0</td>
<td>23.0</td>
<td>3.6</td>
</tr>
<tr>
<td>07</td>
<td>110</td>
<td>20</td>
<td>40</td>
<td>-</td>
<td>8.6</td>
<td>0.7</td>
<td>24.0</td>
<td>3.2</td>
<td>34.5</td>
<td>5.5</td>
</tr>
<tr>
<td>08</td>
<td>125</td>
<td>20</td>
<td>40</td>
<td>20; 30 (1 1/2)</td>
<td>14.0</td>
<td>1.0</td>
<td>38.5</td>
<td>5.0</td>
<td>55</td>
<td>8.5</td>
</tr>
<tr>
<td>09</td>
<td>138</td>
<td>25</td>
<td>55</td>
<td>-</td>
<td>27.0</td>
<td>2.2</td>
<td>75.0</td>
<td>9.8</td>
<td>110</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>25</td>
<td>60</td>
<td>38 (1 1/8)</td>
<td>36.5</td>
<td>3.0</td>
<td>102</td>
<td>13</td>
<td>145</td>
<td>23</td>
</tr>
</tbody>
</table>

1) The transmitted power increases as the width B is increased.
2) Tapered bores and special dimensions can be manufactured on request.
3) Motor power is calculated using a safety factor of 2.

Final selection of the clutch should be carried out by SUCO!

[Exploded view of W-Type]

1. Hub
2. Flyweight
3. Cylindrical pin
4. Tension spring
5. Lining
6. Circlip

d max. = max. bore dia.
Md = torque
nE = engagement speed
nB = operating speed
D = inside dia. of drum
B = flyweight width
Construction and mode of operation
Flyweights ① are normally mounted so that they can pivot on pins ⑤, which are fitted to a flange. There are tension springs ② which restrain neighbouring flyweights until centrifugal force overcomes the spring force. Then the flyweights lift from their seats and the bonded linings ③ contact the inside diameter of the clutch drum ④. Due to the asymmetric arrangement of the flyweights, the torque that can be transmitted by this type of clutch depends on the direction of rotation.

Advantages:
P-Type clutches are extremely narrow. In addition, the asymmetric pivot clutch is the quietest-running clutch in the SUCO product range. For this type of clutch, the performance factor for torque transmission is ca. 1.75 or ca. 1.25 depending on the direction of rotation.
Performance data and dimensions:

P-Type clutches are flange mounted; for this reason standard bore diameters are not given. Possible bore sizes will be given on request.

<table>
<thead>
<tr>
<th>Size</th>
<th>D [mm]</th>
<th>B [mm]</th>
<th>(\text{Md at } n_E 1400) and (n_B 400) [Nm]</th>
<th>Recommended motor power 1) [kW]</th>
<th>(\text{Md at } n_E 2500) and (n_B 1250) [Nm]</th>
<th>Recommended motor power 2) [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>187.5</td>
<td>30</td>
<td>175</td>
<td>13</td>
<td>460</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>193</td>
<td>30</td>
<td>180</td>
<td>14</td>
<td>500</td>
<td>70</td>
</tr>
</tbody>
</table>

Other sizes are available on request.

1) The transmitted power increases as the width B is increased.
2) Motor power is calculated using a safety factor of 2.

Final selection of the clutch should be carried out by SUCO!

Exploded view of P-Type

- 1) Flyweight
- 2) Tension spring
- 3) Lining
- 4) Clutch drum
- 5) Shoe pivot
- 6) Flange

\(\text{Md} = \) torque
\(n_E = \) engagement speed
\(n_B = \) operating speed

D = inside dia. of drum
B = flyweight width
Centrifugal clutches and brakes

Different solutions, driven-side

To accommodate the torque transmission needs of a wide variety of drives, there are many different versions in the SUCO product programme. Both axial and radial drives can be supplied.

All versions can only be used in conjunction with a suitable drum or belt pulley. The operation of a clutch or brake without a suitable drum or belt pulley is forbidden. Non-compliance can result in injury to persons.

Core version -K-
This version without a drum is supplied when a clutch or brake drum already exists in the customer’s set up, or a suitable component for this purpose is available on the output side. The drum must be accurately centred and securely mounted. For higher torque transmission, a clutch can be equipped with several rows of flyweights. The shaft diameter can be varied and tapered mountings are possible.

Core version with drum -G-
This version can be used to connect two shaft ends.

It is important that the installation has the lowest possible misalignment in both radial and angular directions.

Excessive misalignment can result in premature wear of the linings or complete failure of the clutch.

Unit version -E-
Where it is not practical to locate both shaft ends or one shaft end and the drum, a bearing can be used between hub and drum. As shown in Fig. 4, the output drive can be through a tolerance ring on to which a belt pulley, a timing-belt pulley, or a mounting flange can be pressed.

Figure 5 shows a go kart clutch with a drive flange for a chain sprocket.
Unit version with flexible coupling -A-
The easiest way of compensating for radial and angular misalignment between two shafts is to use a flexible shaft coupling. The flexible coupling can be installed and located either radially or axially.

Fig. 6

Belt-pulley version -R-
Where torque is transmitted through a V-belt, the belt groove or grooves can be machined in the drum. Single, duplex or multiple groove pulleys can be produced in this way. Depending on the clutch size, effective pulley diameters from ca. 80 to 270 mm can be incorporated.

Common groove forms are: SPA, SPB, SPZ, and Poly-V to DIN/EN.

Figures 7 to 10 show different belt-drive clutch versions.

The clutch shown in Fig. 9 with a split pulley allows elimination of a tensioning pulley. The V-belt is tensioned by changing the spacer shims between the two pulley halves.
Centrifugal clutches and brakes

Centrifugal brakes

Besides centrifugal clutches, centrifugal brakes are becoming increasingly important.

A decisive advantage of centrifugal brakes over conventional brakes is that they operate without an external power supply.

The brake, mounted on a shaft, starts to brake a drive shaft at a defined speed. Centrifugal force causes the flyweights to lift from the hub so that their linings contact the inside diameter of the brake drum. This action creates a braking torque.

As soon as the speed of rotation of the system falls, the tension springs return the flyweights to their initial positions.

It is a fundamental principle of centrifugal brakes that they cannot brake a system to a standstill, i.e. the system speed searches for an equilibrium condition between the speeds determined by load torque and braking torque.

Although centrifugal brakes are governed by the same technical principles as centrifugal clutches and also use similar components, brakes call for additional investigation of their conditions of use.

The most important principle governing the use of centrifugal brakes is:

FRICITION PRODUCES HEAT

Centrifugal brakes convert mechanical energy into heat, which is generated between the lining and the brake drum, and mostly heats up the latter.

The temperature distribution illustrated above on a sectioned brake drum clearly shows the higher heating of the drum in the region over the flyweights.

The amount of heat generated depends on various factors:

- Transmitted brake torque
- Brake speed
- Duration of the braking operation
- Size of the friction surface
- The mass of the brake drum that has to be heated
Over the braking time, the temperature curve rises very steeply at the start and then gradually approaches a maximum. The temperature at the friction surface (T_{b1}) is substantially higher than the temperature (T_1) at the outer surface of the brake drum. Nevertheless, the brake drum can become very hot during operation and is a source of danger. The authority responsible for operation of the machine is solely responsible for ensuring that suitable protective measures are taken.

The maximum temperature must not exceed the manufacturer’s maximum permitted temperature for the friction material, otherwise the linings may be damaged. This can lead to a loss of effectiveness of the brake and, in the worst case, destruction of the brake.

To prevent this, detailed data about the application are required when laying out a centrifugal brake, among others:

- Operating speed of the system to be braked
- Engagement speed of the centrifugal brake
- Braking torque required at the braking speed
- Changes in the braking torque
- Braking times and frequency
- Field of application

Centrifugal brakes are speed limiting devices and are finding increased use in lowering equipment. In such cases, the speed of lowering corresponds to the equilibrium condition between the speed governed by load torque and the speed governed by braking torque.
Centrifugal clutches and brakes

Key to model codes

<table>
<thead>
<tr>
<th>TYPE DESIGNATION</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Type</td>
<td>See table „Performance data and dimensions“ On page 9, 11, 13, 15</td>
</tr>
<tr>
<td>S-Type</td>
<td></td>
</tr>
<tr>
<td>W-Type</td>
<td></td>
</tr>
<tr>
<td>P-Type</td>
<td></td>
</tr>
</tbody>
</table>

MODELS DRIVEN SIDE
- K: Core
- G: Core with drum
- E: Unit version with bearing
- R: Belt pulley version
- A: Axial output with flexible coupling
- S: Customer special

QUANTITY (depending on model driven side)
- K, G, E, A, S: Number of rows of flyweights
- R: Number of grooves

BORE, INPUT SIDE
1: Cylindrical hole
2: Tapered hole (core side)
3: Tapered hole (bearing side)
4: Gear teeth
5: Thread
6: Flange
9: Special form

CONSECUTIVE NUMBER
08 E 1 1 - 0111
Questionnaire

For customer’s requirements

<table>
<thead>
<tr>
<th>Company</th>
<th>Contact</th>
<th>Department</th>
<th>Street</th>
<th>Country, post code, town or city</th>
<th>Telephone</th>
<th>Fax</th>
<th>E-mail</th>
</tr>
</thead>
</table>

Clutch

<table>
<thead>
<tr>
<th>Type</th>
<th>Power</th>
<th>Engagement speed</th>
<th>Operating speed</th>
<th>Shaft diameter</th>
<th>Load</th>
<th>Braking time</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>kW</th>
<th>rpm</th>
<th>rpm</th>
<th>mm</th>
<th>kg</th>
<th>sec.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Shaft diameter</th>
<th>Flexible coupling (Ø)</th>
<th>Belt-pulley diameter</th>
<th>Number of grooves</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
<th>mm</th>
<th>mm</th>
</tr>
</thead>
</table>

Brake

| | Input |
| | Output |

<table>
<thead>
<tr>
<th>Quantity/year:</th>
<th>Special operating conditions:</th>
</tr>
</thead>
</table>

Installation diagram:
Customized solutions from SUCO

Where the use of a standard version is not practical or the power capacity inadequate, one of our customer-specific designs can provide a solution. Here, SUCO has many years experience.

In cooperation with the customer, our engineers study enquiries for their feasibility and produce a cost-effective solution. Every effort is made to ensure that the design of the product will comply with the customer’s requirements and wishes.

On the following pages, SUCO shows a small selection of the numerous ways of solving drive problems, using combinations of centrifugal clutches and brakes or electromagnetic clutches and brakes, that we can offer. They can form the basis for complete system solutions realised in combination with other drive components.

SUCO has patented many designs and variants in this field.
Examples of different solutions

Electrically-controlled centrifugal brake

An electrically-controlled centrifugal brake allows braking at speeds below the operating speed of the system that is to be braked.

When power is not applied, the brake disc of a spring-loaded brake and the brake drum of a centrifugal brake are not free to rotate. When the engagement speed, which is below the normal operating speed, is exceeded, the centrifugal brake applies a braking torque.

Electromagnetic brake in combination with a centrifugal brake

This version is used for lowering loads at a defined speed with no electric power applied (power failure in the system).

In normal operation, the load is held by the electromagnetic brake. Power failure causes the electromagnetic brake to release. To prevent the uncontrolled descent of the load, the centrifugal brake operates to lower the load at a defined speed.
Centrifugal clutch with electromagnetic brake and belt drive

In this case the centrifugal clutch is used to start a heavily-loaded machine. This protects the drive, which can accelerate at no-load until the engagement speed is reached.

Power is transmitted by V-belts. When the drive is switched off, the electromagnetic brake can be used to bring it to a standstill.

Switchable centrifugal clutch

A collar can be moved axially towards a centrifugal clutch. Pins in the collar engage in the flyweights so that no torque can be transmitted.

The coupling can be switched on or off at any speed; the switching operation may be carried out manually, or by a pneumatic or hydraulic system.
Self-inducing electromagnetic clutch

A belt pulley driven by an internal-combustion engine is fitted with permanent magnets and serves as the rotor of a generator. The stator consists of a pack of laminations with copper windings.

The electric current induced in the windings is fed to the coil of an electromagnetic clutch. This switches automatically at a certain speed to connect the drive to a machine (in this case via a timing-belt pulley).

Where necessary, it is possible for the electromagnetic clutch to be switched on or off at any speed manually or by a control system.

Centrifugal brake „SUCO-ZERO“

This brake is used to bring a system quickly to a standstill if a pre-defined speed is exceeded.

The system can then be reset manually to its original condition.

A decisive advantage is the ability to function independent of an external power supply.
Our agencies in Germany:

Ifaug GmbH
Rosenhain 7
47804 Krefeld
Phone: +49-2151-300478
Fax: +49-2151-300684
jseubold@aol.com

Kania & Edinger GmbH
Am Duestellbach 13
32825 Blomberg
Phone: +49-5235-501580
Fax: +49-5235-5015825
info@kania-antriebstechnik.de

Rossmanith GmbH
Stuttgarter Str. 159
73066 Uhingen
Phone: +49-7161-30900
Fax: +49-7161-309090
www.rossmanith.de
verkauf@rossmanith.de

Our agencies abroad:

Australia
Norman G. Clark (A/Asia) Pty Ltd
44 Kylta Road, West Heidelberg
Victoria 3081 Melbourne
Phone: +61-3-94508200
Fax: +61-3-94508222
www.ngclark.com.au
customerservice@ngclark.com.au

Austria
Bibus Austria GmbH
Eduard Klinger Str. 12
3423 St. Andrä/Wördern
Phone: +43-2242-33388
Fax: +43-2242-3338810
www.bibus.at
info@bibus.at

China
KTR Trading (Shanghai) Co., Ltd.
Floor 1, Bldg. 30,
No.351 Jin Zang Road
201206 Jin Qiao, Pudong,
Shanghai
Phone: +86-21-50320880
Fax: +86-21-50320660
www.ktr.com
ktr-cn@ktr.com

Croatia
Bibus Zagreb d.o.o.
Anina 91
10000 Zagreb
Phone: +385-1-3818004
Fax: +385-1-3818005
www.bibus.hr
bibus@bibus.hr

Czech Republic
Bibus s.r.o.
Videnska 125
63927 Brno
Phone: +420-5-47125300
Fax: +420-5-47125310
www.bibus.cz
bibus@bibus.cz

Denmark

Norway
ZERO-MAX A/S
Thrigesvej 28
8600 Silkeborg
Phone: +45-86-812288
Fax: +45-86-815388
www.zero-max.dk
ext@zero-max.dk

Finland
Movetec Oy
Hannuksenentie 1
02270 Espoo
Phone: +358-9-5259230
Fax: +358-9-52592333
www.movetec.fi
info@movetec.fi

France

Algeria

Morocco

Tunisia
SUCCO VSE France S.A.R.L.
Europarc-Tecpark
40 rue Eugene Dupuis
94000 Créteil
Phone: +33-1-56711750
Fax: +33-1-56711755
www.sucovse.fr
info@sucovse.fr

Great Britain
Combidrive Ltd
Morfa Works, George Street
Llandeilo, Carmarthenshire Wales
SA 19 6AS
Phone: +44-1558-823757
Fax: +44-1558-823056
www.combidrive.com
sales@fridgeclutch.com
sales@fridgeclutch.co

India
3D Equipment
319 Maheshwari Chambers,
6-3-650 Somajiguda
Hyderabad 500082
Phone: +91-40-55668109
Fax: +91-40-55628727
threed@vsnl.net

Israel
Ilan At Gavish
Automation Service Ltd.
26 Shenkar St. Olijrat Arie 49513
P.O. Box 1018 Petach Tikva 49001
Phone: +972-3-9221824
Fax: +972-3-9240761
http://ilan-gavish.com.co
ilan@ilan-gavish.com

Italy

Korea
Daeryuk Corporation
4F, AJU Building;
185-6, Songpa 2-Dong, Songpa-Gu
Seoul, 138-854
Phone: +82-2-4221615
Fax: +82-2-4146977
www.suco.co.kr
info@suco.co.kr

SUCO Headquarter:
SUCO Robert Scheuffele
GmbH & Co. KG
Keplerstrasse 12-14
74321 Bietigheim-Bissingen
Germany
Phone: +49-7142-5970
Fax: +49-7142-980151
info@suco.de
www.suco.de
Netherlands
A.Z. Hollink B.V.
Wismarstraat 3
7418 BN Deventer
Phone: +31-570-638648
Fax: +31-570-607299
www.azhollink.nl
info@azhollink.nl

Belgium
Bibus AG
Hertistr. 1
8304 Wallisellen
Phone: +41-44-8775851
Fax: +41-44-8775851
www.bagus.bibus.ch
info.bag@bibus.ch

Poland
Bibus Menos Sp. z o.o.
ul. Tadeusza Wendy 7/9
81-341 Gdynia
Phone: +48-58-6609570
Fax: +48-58-6617132
www.bimen.com.pl
bimen@bimen.com.pl

Russia
Bibus o.o.o.
Izmailovskiy prospect 2/A
190005 St. Petersburg
Phone: +7-812-2516271
Fax: +7-812-2519014
www.bibus.ru
info@bibus.ru

Singapore
Uni-Drive Systems (S) Pte Ltd
19, Pioneer Sector 2
Singapore 628379
Phone: +65-68612340
Fax: +65-68610403
www.uni-drive.com
bernard@uni-drive.com

Malaysia
Bibus SK, s.r.o.
Priemyselná 4
94901 Nitra
Phone: +421-37-7412525
Fax: +421-37-6516701
www.bibus.sk
sale@bibus.sk

Slovakia
INOТЕH d.o.o.
Ruska cesta 34
2345 Bistrica ob Dravi
Phone: +386-2-6719012
Fax: +386-2-6652081
www.inoteh.si
info@inoteh.si

Slovenia
Amel Técnica Industrial, S.L.
Avda. Pep Ventura nº 23 local 1
08208 Sabadell
Phone: +34-93-7162424
Fax: +34-93-7162458
ameltecnica@wanadoo.es

Spain

Portugal

Switzerland

Liechtenstein
Bibus AG
Hertistr. 1
8304 Wallisellen
Phone: +41-44-8775011
Fax: +41-44-8775851
www.bagus.bibus.ch
info.bag@bibus.ch

South Africa
Remag (Pty) Ltd.
P.O. Box 2281
Midrand 1685
Phone: +27-11-3155672
Fax: +27-11-3155571
eric.rehme@remag.co.za

Taiwan
Daybreak Int’l (Taiwan) Corp.
3 F., 124 Chung-Cheng Road
Shihlin 11145, Taipei
Phone: +886-2-88661234
Fax: +886-2-88661239
www.daybreak.com.tw
day111@ms23.hinet.net

Thailand
P & W Quality Drive Co. Ltd.
8/10 Vibhavadi 44,
Vibhavadi-Rangsit Rd.
Lad Yao, Jatujak, Bangkok 10900
Phone: +66-2-5620789
Fax: +66-2-5620787
Fax: +66-2-5620788
wichai@pandw.co.th

Ukraine
Bibus Ukraine TOV
Ul. Vasilkovskaya 14,
Office 712
03040 Kiev
Phone: +380-44-4943701
Fax: +380-44-4962808
www.bibus.com.ua
info@bibus.com.ua

USA

Canada

Eastcoast
SUСO Inc.
803 E. Washington St.
Medina, Ohio 44256
Phone: +1-330-7221145
Fax: +1-330-7232979
www.suco.us
sucoinc@aol.com

Westcoast
SUСO Inc.
1001 East Sheridan Street
Phoenix, Arizona 85006
Phone: +1-330-7221145
Fax: +1-330-7232979
www.suco.us
sucoinc@aol.com
Pressure monitoring with SUCO

Request our catalogue or visit our homepage!

Your distributor for SUCO products: